首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbonitriding of AISI 304 austenitic stainless steel was performed at a plasma-processing power of 450 W using inductively coupled radio frequency (rf) plasma in a gas mixture of 50% N2 and 50% C2H2. The rate of carbonitriding, microhardness, phase structure of the compound layer, surface microstructure and cross-section morphology were studied before and after the annealing process. At the annealing temperature up to 800°C, the microhardness values of the compound zones decrease, while the associated values of the diffused zones increase. Little change was found in the thickness of the compound and diffused zones when the carbonitrided samples were annealed up to 400°C. However, at a higher annealing temperature, the thicknesses of both zones increase. The γ-Fe austenite is the main crystalline phase that can be detected by X-ray diffraction. As the annealing temperature increases up to 500°C, X-ray spectra show α-Fe and Fe5C2 phases. Nitrogen diffuses more deeply from the near surface to the interior of the treated sample as the annealing temperature increases up to 800°C and this might explain the extent of carbonitrided thickness and the enhanced microhardness of the diffused zone.  相似文献   

2.
《Current Applied Physics》2018,18(8):886-892
Effects of annealing temperature (600–750 °C) on crystalline structure, the morphology and piezoresponse hysteresis loops of BaTiO3 nanofibers prepared by electrospinning are characterized by X-ray diffraction, scanning electronic microscopy, transmission electron microscope and piezoresponse force microscope. When the annealing temperature is 700 °C, the nanofibers become smoother and have a diameter of 100–300 nm. Meanwhile the typical butterfly-shaped amplitude loop and 180°phase change represents the best ferroelectric and piezoelectric properties at 700 °C. So the 700 °C was found to be optimum for good piezoelectric characteristics at annealing temperature of 600 °C–750 °C. In order to give more clear evolution of domain states at different external fields, the three dimensional topographic and phase images of the nanofiber at different temperatures are observed by piezoresponse force microscope. The 90° domain switching is observed during heating from room temperature to 125 °C and the domain switching tends to be stable when the temperature exceeds a critical value. The thermal stress due to the high temperatures is responsible for switching mechanism from the perspective of equilibrium state free energy. This work suggests that the temperature variation should be considered while designing the ferroelectric devices based on one dimensional material.  相似文献   

3.
The structure and phase composition of lightly-doped Al-Fe alloys obtained by ultrarapid quenching from the melt are investigated. The surface of foils was studied using scanning electron microscopy, atomic-force microscopy, and Rutherford backscattering technique. The variation in the phase composition of alloys during annealing was studied by x-ray diffraction technique and by resistivity and microhardness measurements. The Al-Fe alloys have microcrystalline structure with a nonuniform iron content in the near-surface region of the samples. A correlation of depth profiles of iron and phase composition of the foils is observed. It is found that decomposition of the supersaturated α solid solution proceeds in the temperature range 250–350°C. As the annealing temperature increases, a metastable Al6Fe phase is precipitated. In the range 300–500°C, the metastable Al6Fe phase decomposes, and a stable Al3Fe phase is precipitated.  相似文献   

4.
The influence of the hydrogen annealing treatment on the reliability of Ti/HfOx /Pt capacitors is investigated by analyzing bias temperature instability (BTI). As compared to the N2‐annealed sample, in the case of hydrogen‐annealed samples, both the set/reset voltages and currents are reduced from 6.5 V/–1.6 V to 3.8 V/–1.2 V and from 4 mA/170 nA to 800 µA/30 nA at 0.1 V, respectively. Of particular interest is the dramatic reduction in the set voltage variation from 3.3 V to 1.8 V. In addition, in BTI experiments, the current shift at the high resistance state (HRS) is reduced from 1.5 µA to 40 nA under a bias stress of –1 V/1000 s and from 40 µA to 0.5 µA under a temperature stress of 120 °C/1000 s. These results show that the hydrogen annealing treatment is very effective in improving the reliability of RRAM cells because it reduces the leakage current under bias temperature stress. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
影响纳米Cu固体材料性能的工艺参数研究   总被引:4,自引:0,他引:4       下载免费PDF全文
 采用正交试验方法,通过XRD,MHV2000型显微硬度计(数显)和基于浮力原理等测试手段研究了压制压力、保压时间、退火温度和退火时间对自悬浮定向流-冷压法制备纳米Cu固体材料性能(晶粒大小、密度及显微硬度)的影响。结果表明:对晶粒度而言,退火温度是显著性影响因素,同时表明纳米Cu固体具有较好的热稳定性;对密度而言,压制压力是显著性影响因素;对显微硬度而言,退火时间是显著性影响因素。  相似文献   

6.
The effect of nitrogen implantation on microhardness in 4145 steel was investigated. Practically no increase in microhardness for 10, 20 and 40 gm loads was observed in samples implanted with a dose of 6.5×1017N+ ions cm?2 at 94 keV. The effect of ion-beam induced intermixing of aluminium and titanium film (400Å), due to nitrogen implantation was also studied. A noticeable increase of 15% in microhardness was observed. Annealing at temperature ∽300°C proved effective, while a decreasing trend in hardness could be observed for annealing temperatures >300°C. Furthermore, preliminary test indicated that these samples were more suitable for wear-protection.  相似文献   

7.
The structure and microhardness of textured ribbon substrates made of binary copper-based alloys and annealed in the temperature interval 400–600°C is investigated. The optimal temperature of additional annealing at which the strength of Cu–Fe and Cu–Cr alloys reaches a maximum is determined. From experimental data, recommendations on the optimal deposition temperature of epitaxial buffer layers and superconducting films can be developed.  相似文献   

8.
The electronic surface states of cleaved and annealed Ge(111) surfaces have been investigated by photoemission yield spectroscopy and contact potential measurements on a set of differently doped samples. On the 2 × 1 cleaved surface, a surface state band centered about 0.7 eV below the valence band maximum is found. The variations of the work function with the doping level show that an empty surface state band exists above the Fermi level. After annealing at temperatures of the order of 350°C, this surface exhibits a 2 × 8 superstructure. A new surface state band is then found closer to the valence band maximum. This variation of the surface state distribution is correlated to a change in the surface potential. The variation of the electronic characteristics upon oxygen adsorption are also reported and an evaluation of the sticking coefficient is made for both structures.  相似文献   

9.
The factors responsible for the change in the orientation of the natural unipolarity vector due to heating to the Curie temperature of a Pt/PZT/Pt thin-film capacitor (PZT—lead zirconate titanate) formed on a TiO2/SiO2/Si substrate have been considered. Lead zirconate titanate thin layers containing a small excess of lead oxide have been formed ex situ using high-frequency magnetron sputtering with a variation in the annealing temperature (crystallization of the perovskite phase) in the range from 580 to 650°C. It has been assumed that the reorientation of the unipolarity vector in the PZT layer is caused by the change in the mechanism of crystallization of the perovskite phase with an increase in the annealing temperature.  相似文献   

10.
Influence of varying Fe/B ratio upon hyperfine interactions is investigated in the Fe91?x Mo8Cu1Bx rapidly quenched alloys. They are studied both in the as-quenched (amorphous) state as well as after one-hour annealing at different temperatures ranging from 330 °C up to 650 °C. Such a heat treatment causes significant structural changes featuring a formation of nanocrystalline bcc-Fe grains during the first crystallization step. At higher annealing temperatures, a grain growth of bcc-Fe and occurrence of additional crystalline phases are observed. The relative fraction of the crystalline phase governs the development of magnetic hyperfine fields in the residual amorphous matrix even if this was fully paramagnetic in the as-quenched state. The development of hyperfine interactions is discussed as a function of annealing temperature and composition of the investigated alloys. 57Fe Mössbauer spectrometry was used as a principal analytical method. Additional information related to the structural arrangement is obtained from X-ray diffractometry. It is shown that in the as-quenched state, the relative fraction of magnetic hyperfine interactions increases as the amount of B rises. In partially crystalline samples, the contribution of magnetic hyperfine interactions inside the retained amorphous matrix increases with annealing temperature even though the relative fraction of amorphous magnetic regions decreases.  相似文献   

11.
Changes in the microhardness of silicon samples exposed to temperatures of 20–60°C are studied. It is found that the microhardness increases; this effect is preserved at room temperature for 20 min and non-monotonically depends on the temperature and exposure time (the changes are maximal at ~40°C and ~100 s, respectively). The microhardness of samples with native oxide removed does not change. The results are discussed in terms of a model of processes in the silicon-oxide system, which was previously proposed for the case of irradiation of silicon with light. The practical importance of the effect is discussed.  相似文献   

12.
An ultrafine grained (UFG) structure has been obtained in commercial purity Al by high-pressure torsion (HPT). Changes in microhardness and electrical resistivity of the UFG material after annealing at various temperatures within a range of 363–673 K have been investigated in correlation with the microstructure evolution. It has been shown that annealing at 363 K leads to substantial decrease in the electrical resistivity while keeping high microhardness level and approximately the same average grain size. The contributions from the various microstructural units (vacancies, dislocations, grain boundaries (GBs)) to the electrical resistivity were analysed. It was shown for the first time that a non-equilibrium state associated with strain-distorted grain boundary (GB) structure strongly affects electrical resistivity of UFG Al. The resistivity of non-equilibrium GBs in UFG structure formed by HPT was evaluated to be at least 50% higher than the resistivity of the thermally equilibrium GBs in a coarse-grained structure.  相似文献   

13.
The relative amounts of the α- and γ-crystalline forms of nylon 6 obtained from the glassy state under different crystallization conditions have been studied by the X-ray diffraction procedure described in the previous paper. The weight fraction of the γ-form decreases with increasing crystallization temperature above 160°C and that of the α-form increases. Growth of the γ-form is predominant in crystallization at 100°C and of the α-form at 200°C. Differential scanning calorimetry and density data are presented. A large amount of a thermally unstable form is included in the γ-form crystallized from the glassy state at lower crystallization temperatures and is transformed into the a-form with annealing at 200γC. Thermal stability of the γ-form obtained from the glassy state was quantitatively investigated and discussed.  相似文献   

14.
Bismuth nanodroplets on GaAs substrate were obtained by metalorganic vapor phase epitaxy (MOVPE). New products have been synthesized when Bi nanodroplets are heated under oxygen atmosphere. The oxidation process of Bi nanodroplets consists of a heating from the room temperature to different oxidation temperatures (350, 500, 600 °C) with a temperature rate of 14 °C/min. The annealing duration was fixed to 30 min. The presence of oxygen in the products was confirmed by energy dispersive X-ray (EDX) measurements using a scanning electron microscope (SEM). SEM images show that Bi microcomposites density decrease and their size increases with increasing annealing temperature. After X-ray diffraction analysis of the products no obvious peaks could be observed. The reflectance spectra of the products were studied in spectral domains ranged from 200 nm to 1100 nm. By fitting the reflectivity signal, we extracted the thickness of the products and their refractive index variation versus wavelength. The results show that the thickness of the samples increases with increasing annealing temperature. The photoluminescence (PL) spectra under excitation at 325 nm shows a broad emission centered at around 1.92 eV.  相似文献   

15.
The residual lattice strains of nanocrystals, which are responsible for the formation of states with transverse magnetic anisotropy in samples of the Fe-Si-Nb-B-Cu alloys (Finemets) subjected to annealing under tensile loading with the subsequent relaxation annealing at temperatures in the range from 500 to 600°C, have been measured using X-ray diffraction. The relative extension and compression of interplanar spacings have been compared with the induced magnetic anisotropy constants determined from the magnetic hysteresis loops. It has been shown that, during the relaxation annealing at the nanocrystallization temperature (500?C540°C), the observed decrease in the residual strains is accompanied by a decrease in the transverse magnetic anisotropy constant. A linear correlation between the relative extension and compression of the interplanar spacings for different crystallographic planes and magnetic anisotropy constant has been revealed. The deviation from linearity is observed after annealing at a temperature of 600°C, which is explained by a possible increase in sizes of nanocrystals, changes in their structure, and partial crystallization of the amorphous matrix.  相似文献   

16.
Irradiation of EP-823 (16Cr12MoWsiVNbB) ferritic-martensitic steel with 7-MeV Ni++ ions and with 30- and 70-keV He+ ions at a temperature of 500°C was followed by an increase in the microhardness, which was due to both radiation point defects and changes in the phase composition and the dislocation structure of the steel. It was found that the dependence of the largest relative increase in the microhardness on the concentration of radiation-induced point defects in the near-surface region of the steel under irradiation with different ions correlated with an analogous dependence of the surface segregation of silicon and chromium.  相似文献   

17.
18.
The exchange bias effect at the interface between antiferromagnetic (AFM) and ferromagnetic (FM) layers is of paramount importance in state‐of‐the‐art spintronic devices. However, a complete account of the physics behind exchange bias remains elusive and new effects are constantly unraveled. In particular, a bimodal distribution of blocking temperatures $ (T_{\rm B})$ was recently discovered, associated with the bulk of the AFM layer and interfacial AFM/FM regions with spin‐glass‐like properties. Here we study exchange bias in MnIr (25, 60 Å)/CoFe (50 Å) bilayers annealed at high temperatures (623 K and 673 K). We observe, for all samples and annealing temperatures, the existence of a large exchange bias variation at low temperatures associated with interfacial disorder. Such variation is more significative in the thinnest samples, where it is found to be independent on annealing temperature. On the other hand, in the thickest samples the contribution of the low temperature distribution largely increases with annealing temperature, due to enhanced disorder arising from Mn diffusion. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Tin bronze (TB) powder was deposited on a stainless steel substrate by cold spraying. Post-deposition heat treatment was conducted in an electrical resistance furnace under nitrogen atmosphere at a temperature of 850 °C for 3 h. The effect of heat treatment on the microstructure and microhardness of cold-sprayed TB coating was investigated. It was found that the as-sprayed TB coating presented a dense microstructure. Heat treatment significantly influenced the microstructure and microhardness of cold-sprayed TB coating. A distinguishable diffusion layer of about 150 μm was formed in the coating near the coating/substrate interface. A compound was precipitated in the diffusion layer. The microhardness in the coating was changed gradually along the coating from the interface to the coating surface after heat treatment. The microhardness in the diffusion layer was high owing to the precipitation of hard phase, while it was much low in other area due to the obvious grain growth during annealing.  相似文献   

20.
Amorphization by solid state reaction at room temperature in Co-Sn multilayers with periodicities of 65, 130 and 195 Å and relative Co to Sn ratio varying as 4, 3, 2 has been studied by zero field NMR method. The distribution of59Co hyperfine fields and that of NMR enhancement factors were used as a probe of the ferromagnetic part of a sample and its evolution with the annealing time. The critical role of the interface during the first hours of annealing is pointed out. On the long time scale the diffusion process is slowed down by the creation of Kirkendall voids and after 3 months of annealing some crystalline Co is still present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号