首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Bovine seminal ribonuclease is the only pancreatic-type ribonuclease to possess a dimeric structure: the two identical subunits are covalently linked by two disulfide bridges. Actually, the protein exists in two different dimeric structures owing to the possibility of swapping the N-terminal α-helical segments: the swapped MxM dimer, and the non-swapped M=M dimer. The thermal denaturation of the two separated forms is investigated by differential scanning calorimetry. The process is reversible and can be represented by two sequential two-state transitions, indicating the presence of two domains in BS-RNase, regardless of the swapping phenomenon. Inspection of the structural models leads to the tentative identification of an external domain and a core domain, the latter more stable.  相似文献   

2.
Reductive unfolding studies of proteins are designed to provide information about intramolecular interactions that govern the formation (and stabilization) of the native state and about folding/unfolding pathways. By mutating Tyr92 to G, A, or L in the model protein, bovine pancreatic ribonuclease A, and through analysis of temperature factors and molecular dynamics simulations of the crystal structures of these mutants, it is demonstrated that the markedly different reductive unfolding rates and pathways of ribonuclease A and its structural homologue onconase can be attributed to a single, localized, ring-stacking interaction between Tyr92 and Pro93 in the bovine variant. The fortuitous location of this specific stabilizing interaction in a disulfide-bond-containing loop region of ribonuclease A results in the localized modulation of protein dynamics that, in turn, enhances the susceptibility of the disulfide bond to reduction leading to an alteration in the reductive unfolding behavior of the homologues. These results have important implications for folding studies involving topological determinants to obtain folding/unfolding rates and pathways, for protein structure-function prediction through fold recognition, and for predicting proteolytic cleavage sites.  相似文献   

3.
A novel method for characterization of the simultaneous reductive unfolding pathways of five isoforms of bovine pancreatic ribonuclease B (RNase B) is demonstrated. The results indicate that each isoform unfolds reductively through two three-disulfide-containing structured intermediates before proceeding to the fully reduced form, as in the reductive unfolding pathways of the A variant lacking the carbohydrate chain. The rates of reduction of bovine pancreatic ribonuclease A (RNase A) and RNase B and the formation and consumption of their reductive intermediates are identical, indicating that the unfolding events necessary to expose disulfide bonds for reduction are not affected by the oligosaccharide. The method utilizes top-down mass spectrometry and a naturally occurring tag on the protein, viz. the carbohydrate moiety, to obtain unfolding information of an ensemble of protein isoforms and is a generally applicable methodological advance for conducting folding studies on mixtures of different proteins.  相似文献   

4.
A rigid-geometry approach to protein conformational searches has been used to calculate stable structures for localized regions of the molecules bovine pancreatic ribonuclease A and human lysozyme. The search method is essentially an application of the local deformation algorithm of Gō and Scheraga [Macromolecules, 3 , 178–187 (1970)]. A series of local chain deformations is produced in the polypeptide chain. The deformations are screened to eliminate structures having serious atomic overlaps or energetically unreasonable backbone dihedral angles. The remaining structures are refined by energy minimization and the rms deviations of the energy-minimized structures, relative to the native structures, are calculated. The correlation between low rms deviation and low energy is reasonably good, indicating that this method should be useful in generating a small number of candidate structures for further energy refinement. Further applications to proteins with an unknown structure, such as homology-based modeling applications, should now be amenable to this type of procedure.  相似文献   

5.
Low-frequency internal motions in protein molecules play a key role in biological functions. A direct relationship between low-frequency motions and enzymatic activity has been suggested for bovine pancreatic ribonuclease (RNase A). The flexibility-function relationship in this enzyme has been attributed to a subtle and concerted breathing motion of the beta-sheet regions occurring upon substrate binding and release. Here, we calculate an approximate value for the force constant and the wave number of the low-frequency beta-sheet breathing motion of RNase A, by using the Boltzmann hypothesis on a set of data derived from a simple conventional structural superimposition of an unusual large number of X-ray structures available for the protein. The results agree with previous observations and with theoretical predictions on the basis of normal-mode analysis. To the best of our knowledge, this is the first example in which the wave number and the force constant of a low-frequency concerted motion in a protein are directly derived from X-ray structures.  相似文献   

6.
A method has been developed for minimizing the energy of a polypeptide with rigid geometry while keeping all disulfide loops closed exactly. Exact closure of disulfide loops implies that some dihedral angles become implicit functions of the remaining dihedral angles in the polypeptide; the efficacy of the method is related to the manner in which the implicitly defined dihedral angles are chosen. The method has been used to find minimum-energy conformations of bovine pancreatic trypsin inhibitor, ribonuclease A, crambin, the defensin HNP3 dimer, and ω-conotoxin. For the first two proteins, the starting conformations for energy minimization had been derived previously from crystal structures using pseudopotentials to keep the disulfide loops almost closed. Starting conformations for the remaining three proteins were derived from their crystal or NMR structures by similar procedures. In all cases, the energy-minimized structures had a significantly and, in some cases, substantially, lower energy than the starting structures. The RMS deviations between the exactly closed energy- minimized structures and the crystal or NMR structures from which they were derived ranged from 0.9 Å to 1.9 Å, suggesting that the computed structures can serve as “regularized” native structures for these proteins. The energy of a ribonuclease derivative lacking the 65–72 disulfide bridge was minimized using the procedure; the result showed that this derivative has a low-energy structure with a conformation very close to that of native ribonuclease, and is consistent with its postulated role in the folding of ribonuclease. These results offer strong support for the validity of the rigid-geometry model in the studies of the conformational energy of proteins. © 1997 by John Wiley & Sons, Inc.  相似文献   

7.
Calorimetry has been employed to investigate the quantitative energetic aspects and mechanism underlying protein–tetraethylammonium bromide (TEAB) interactions. Differential scanning calorimetry and UV–Visible spectroscopy have been used to study the thermal unfolding of three proteins of different structure and function (bovine serum albumin, α-lactalbumin, and bovine pancreatic ribonuclease A). The mode of interaction has been studied by using isothermal titration calorimetry, which demonstrates the absence of appreciable specific binding of TEAB to the protein. This suggests the involvement of solvent mediated effects and, possibly weak non-specific binding. The thermal unfolding transitions were found to be calorimetrically reversible for α-lactalbumin and bovine pancreatic ribonuclease A and partially reversible in the case of bovine serum albumin. The results indicate protein destabilization promoted by the TEAB interaction. The preferential interaction parameters of TEAB with α-lactalbumin and ribonuclease A confirm that an increased interaction of the hydrophobic groups of the TEAB with that of the protein upon denaturation is responsible for the reduced thermal stability of the protein. The decrease in the thermal stability of proteins in the presence of TEAB is well supported by a red shift in the intrinsic fluorescence of these proteins leading to conformational change thereby shifting the native ? denatured equilibrium towards right. The forces responsible for the thermal denaturation of the proteins of different structure and function in the presence of TEAB are discussed.  相似文献   

8.
When polyribosomal mRNP is exposed to ribonucleases most but not all of the mRNA is converted to acid soluble products. If mRNP is prepared under isotonic conditions there are two types of ribonuclease resistant core fractions, one which contains the poly(A) part of the mRNA and a second which contains mRNA fragments, 30-40 nucleotides in length. Like poly(A) these fragments appear to be protein associated in the mRNP complex. Non-poly(A) fragments in mRNP prepared from adenovirus-infected cells harvested in the late phase of infection contained only 3% of CAP structures and 12% of internally located methylated nucleotides. This indicates that no CAP structures but one out of the seven internally located methylated nucleotides found in the mRNA are situated in protein associated regions.  相似文献   

9.
Bovine pepsin A inactivates pancreatic ribonuclease through a limited proteolysis the same way as does porcine pepsin A. The specific activity is lower and more dependent on the ionic strength. The proteolytic specificity of bovine pepsin A has been investigated with B-chain of oxidized porcine insulin as the substrate. The specificity resembles qualitatively that of porcine pepsin but with quantitative differences.  相似文献   

10.
Although single targeted anti-cancer drugs are envisaged as safer treatments because they do not affect normal cells, cancer is a very complex disease to be eradicated with a single targeted drug. Alternatively, multi-targeted drugs may be more effective and the tumor cells may be less prone to develop drug resistance although these drugs may be less specific for cancer cells. We have previously developed a new strategy to endow human pancreatic ribonuclease with antitumor action by introducing in its sequence a non-classical nuclear localization signal. These engineered proteins cleave multiple species of nuclear RNA promoting apoptosis of tumor cells. Interestingly, these enzymes, on ovarian cancer cells, affect the expression of multiple genes implicated in metabolic and signaling pathways that are critic for the development of cancer. Since most of these targeted pathways are not highly relevant for non-proliferating cells, we envisioned the possibility that nuclear directed-ribonucleases were specific for tumor cells. Here, we show that these enzymes are much more cytotoxic for tumor cells in vitro. Although the mechanism of selectivity of NLSPE5 is not fully understood, herein we show that p27KIP1 displays an important role on the higher resistance of non-tumor cells to these ribonucleases.  相似文献   

11.
The thermodynamic stability of pancreatic ribonuclease B (RNase B), which possesses identical protein structure of pancreatic ribonuclease A (RNase A), but differs by the presence of a carbohydrate chain attached to Asn 34, was studied by means of differential scanning calorimetry (DSC) at different pH conditions. The comparison between the two proteins has shown a little but significant stabilization of RNase B with respect to the unglycosylated one at pH values higher than 7.0. The thermodynamic analysis reveals the carbohydrate moiety to have a small stabilization effect of 3 kJ mol–1 at pH 8.0 and 63°C on the protein. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 ? structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure.  相似文献   

13.
Residual structures in denatured proteins have acquired importance in recent years owing to their role as protein-folding initiation sites. Locating these structures in proteins has proved quite formidable, requiring techniques like NMR. Here in this report, we take advantage of the ubiquitous presence of tryptophan residues in residual structures to hunt for their presence using steady-state fluorescence spectroscopy. The surface accessibility and rotational dynamics of tryptophan in putative residual structures among ten different proteins, namely glucagon, melittin, subtilisin carlsberg, myelin basic protein, ribonuclease T1, human serum albumin, barstar mutant, bovine serum albumin, lysozyme and Trp-Met-Asp-Phe-NH2 peptide, was studied using steady state fluorescence quenching and anisotropy, respectively. Five proteins, namely ribonuclease T1, bovine serum albumin, melittin, barstar and hen egg white lysozyme appear likely to possess tryptophan(s) in hydrophobic clusters based on their reduced bimolecular quenching rates and higher steady-state anisotropy in proportion to their chain length. We also show that the fluorescence emission maximum of tryptophan is insensitive to the presence of residual structures.  相似文献   

14.
Dimeric and oligomeric surfactants are novel surfactants that are presently attracting considerable interest in the academic and industrial communities working on surfactants. This paper first presents a number of chemical structures that have been reported for ionic, amphoteric and nonionic dimeric and oligomeric surfactants. The following aspects of these surfactants are then successively reviewed the state of dimeric and oligomeric surfactants in aqueous solutions at concentration below the critical micellization concentration (cmc); their behavior at the air/solution and solid/solution interfaces; their solubility in water, cmc and thermodynamics of micellization; the properties of the aqueous micelles of dimeric and oligomeric surfactants (ionization degree, size, shape, micropolarity and microviscosity, solution microstructure, solution rheology, micelle dynamics, micellar solubilization, interaction between dimeric surfactants and water-soluble polymers); the mixed micellization of dimeric surfactants with various conventional surfactants; the phase behavior of dimeric surfactants and the applications of these novel surfactants.  相似文献   

15.
The fungal type III polyketide synthase 2'-oxoalkylresorcylic acid synthase (ORAS) primes with a range of acyl-Coenzyme A thioesters (C4-C20) and extends using malonyl-Coenzyme A to produce pyrones, resorcinols, and resorcylic acids. To gain insight into this unusual substrate specificity and product profile, we have determined the crystal structures of ORAS to 1.75 A resolution, the Phe-252-->Gly site-directed mutant to 2.1 A resolution, and a binary complex of ORAS with eicosanoic acid to 2.0 A resolution. The structures reveal a distinct rearrangement of structural elements near the active site that allows accommodation of long-chain fatty acid esters and a reorientation of the gating mechanism that controls cyclization and polyketide chain length. The roles of these structural elements are further elucidated by characterization of various structure-based site-directed variants. These studies establish an unexpected plasticity to the PKS fold, unanticipated from structural studies of other members of this enzyme family.  相似文献   

16.
Our ability to access the more complex members of the cyclotryptamine family of alkaloids, and to exploit their disparate biological activities, is limited by the synthetic challenge posed by their oligomeric, polyindoline structures. A recurring structural theme within these molecules is the presence of multiple quaternary stereocenters in close proximity to one another. Over the last decade, we have developed a set of transformations that allow rapid access to polyindolines, a number of which exploit the ability of catalytic levels of palladium to orchestrate carbon-carbon bond formation with impressive levels of regio- and stereocontrol. This review tells the story behind the development of this toolbox of synthetic methods, and their validation through the total synthesis of a number of structurally complex cyclotryptamine alkaloids. It also highlights an aspect of asymmetric catalysis that has received little attention, the ability of catalytic asymmetric reactions to selectively elaborate complex, polyfunctional molecules.  相似文献   

17.
We describe a novel method for determining weak association constants of oligomeric protein complexes formed transiently under equilibrium conditions. This type of equilibrium process is recognized as being biologically important, but generally hard to study. Heteronuclear spin relaxation rates measured at multiple protein concentrations are analyzed using relaxation rates predicted from hydrodynamic calculations, yielding equilibrium constants and structural characterization of the protein complexes. The method was used to study the oligomerization equilibrium of bovine low molecular weight protein tyrosine phosphatase. X-ray structures of monomeric and dimeric forms of the protein have been reported previously. Using longitudinal and transverse (15)N relaxation rates measured at four different protein concentrations, we detected the monomer, dimer, and a previously unknown tetramer and measured the dissociation constants of the equilibria involving these species. A comparison of experimental and predicted relaxation rates for individual backbone amide (15)N spins enabled delineation of the tetramerization interface. The results suggest a novel concept for substrate modulation of enzymatic activity based on a "supramolecular proenzyme". The fast and reversible switching of the "supramolecular proenzyme" would have obvious advantages for the regulation of enzymes involved in cell signaling pathways.  相似文献   

18.
The binding of Coomassie Brilliant Blue R-250 to several species of bovine pancreatic ribonuclease is affected by the presence of a carbohydrate moiety in the enzyme molecule. Enzymic deglycosylation of several chromatographic fractions of ribonuclease, which have different degrees of glycosylation, results in increased staining by Coomassie Brilliant Blue R-250. Ovalbumin and other glycoproteins tested show similar behavior. The results indicate that carbohydrate moieties may represent a common hindrance to the binding of Coomassie Brilliant Blue dyes to glycoproteins.  相似文献   

19.
A putative mouse oocyte maturation inhibitory protein was purified from a urine preparation from pregnant women by Sephadex G-100 gel filtration and reverse-phase chromatography on the basis of inhibitory activity of polar body formation of denuded mouse oocytes in culture. Amino terminal sequence analyses showed that residues 5 to 15 of this protein were identical to residues 1 to 11 of human nonsecretory ribonuclease. Furthermore, residues 1 to 4 of this protein were identical to residues -4 to -1, corresponding to part of a signal peptide region of eosinophil-derived neurotoxin, whose mature sequence is identical to nonsecretory ribonuclease. These results indicate that the protein purified as a putative mouse oocyte maturation inhibitory protein from the urine of pregnant women may be a product of an peculiar processing of a nonsecretory ribonuclease precursor.  相似文献   

20.
The S-peptide and S-protein components of bovine pancreatic ribonuclease form a noncovalent complex with restored ribonucleolytic activity. Although this archetypal protein-fragment complementation system has been the object of historic work in protein chemistry, intrinsic limitations compromise its utility. Modern methods are shown to overcome those limitations and enable new applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号