首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is an extension of previous work on cellulosics [(1994)Colloid Polym Sci 272: 284, 393] that showed that unusually good mechanical properties can be obtained by drying a swollen network of semirigid chains in a state of strain. This novel approach is applied in this investigation to gelatin, because of its attractive environmental characteristics but poor mechanical properties in the unmodified form. Since drawing of non-crosslinked gelatin is not practical, crosslinking by formaldehyde was used, followed by swelling, drawing and drying at fixed length. Mechanical tests were performed in static and dynamic modes. In this way improvements of Young's modulusE, and stress at break b were determined as a function of gelatin concentration during drying. An increase inE and b up to 2–3 times, and in the dynamic modulusE up to 6 times, was obtained when the draw ratio reached 4–5, after whichE, E, and b were found to decrease. Such behavior is explained by the highest orientation being achieved at =4–5, as proved by x-ray analysis. At =10–20 the orientation is lost due to relaxation of chain segments, which is preceded by partial destroying of the network structure (chemical and physical), possibly via chain scission, but probably mostly by the pulling out of chains from crystallites. In any case, the mechanical properties become poor again.The improvements reported above were referred to the undrawn but crosslinked gelatin. Compared to the starting isotropic non-crosslinked material, the improvement is slightly higher. The observation that the improvements are less than those obtained for the cellulosics is explained by the coexistence of interpenetrating chemical and physical networks, which is typical of gelatin. This structural feature drastically reduces the orientability of the chains and the improvements that can be expected in the mechanical properties.  相似文献   

2.
Polymer composites composed of poly(methyl methacrylate) (PMMA) and silica (14 nm diameter) have been investigated. The influences of sample preparation and processing have been probed. Two types of sample preparation methods were investigated: (i) solution mixture of PMMA and silica in methyl ethyl ketone and (ii) in situ synthesis of PMMA in the presence of silica. After removing all solvent or monomer, as confirmed using thermogravimetric analysis, and after compression molding, drops in Tg of 5–15 °C were observed for all composites (2–12% w/w silica) and even pure polymer reference samples. However, after additional annealing for 72 h at 140 °C, all previously observed drops in Tg disappeared, and the intrinsic Tg of bulk, pure PMMA was again observed. This is indicative of nonequilibrium trapped voids being present in the as‐molded samples. Field‐emission scanning electron microscopy was used to show well‐dispersed particles, and dynamic mechanical analysis was used to probe the mechanical properties (i.e., storage modulus) of the fully equilibrated composites. Even though no equilibrium Tg changes were observed, the addition of silica to the PMMA matrices was observed to improve the mechanical properties of the glassy polymer host. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2270–2276, 2007  相似文献   

3.
The mechanical behavior of latex films is governed by their macromolecular nature as well as by their origin from particles dispersed in an aqueous medium. When monomers of different polarity are copolymerized in emulsion copolymerization, a heterogeneous distribution of the polar groups in the latex and the film can occur, owing to the different water solubilities of the comonomers. Films from these latices in many cases show a two-phase morphology, first, consisting of the main polymer within the particles and, second, a phase which is concentrated in the interphase between the original particles and which has a strong influence on the mechanical properties of the films. Films from latices with crosslinked particles behave like homogeneous networks in the linear viscoelastic range, i.e. at small strains. Structured networks are found when latex films are interparticularly crosslinked during or after film formation, e.g. by polar bifunctional monomers or metal salts. Tensile tests of films show that the mechanical strength of latex films develops in the last stage of film formation by interdiffusion and entaglement formation across particle boundaries.  相似文献   

4.
 Network formation of gelatin gel is known to consist of three-dimensionally cross-linked triple helices among polypeptide chains. The effects of added low molecular weight mono-ols, diols and polyols on the higher-order structure formation of gelatin chains were investigated using the following measurements: melting temperature, viscoelasticity and spin-lattice relaxation time (T 1) of H17 2O of gels, and circular dichroism spectra of diluted gelatin solutions. Furthermore, hydration behaviors of these hydroxy compounds were evaluated from the dynamic hydration numbers (n DHN) derived from T 1 of H17 2O in the solutions. It was found that network structures of gelatin gels containing hydoxy compounds were influenced by the number and position of hydroxyl groups as well as the number of carbon atoms of these coexisting compounds. The effect of hydroxyl groups of hydroxy compounds was considered to stabilize the helices among gelatin chains. Especially, the addition of polyols with large number of hydroxyl groups increased the number of cross-linking junctions in the gel networks, which consist of the aggregation among the helices. On the contrary, the effect of carbon atoms of hydroxy compounds is to disturb the formation of the helices and the aggregation among the helices. Received: 18 April 1996/Accepted: 23 July 1996  相似文献   

5.
The thermomechanical properties of opaque and transparent polymer films of a solution of poly(4-methyl-1-pentene) (PMP) in cyclohexane and carbon tetrachloride obtained by casting on teflon and glass plates were investigated. The dynamic mechanical thermal analysis was applied in a frequency range from 0.01 to 100 Hz. The curves of loss tangent vs. temperature varied depending on the sample thermal history. The first part of these curves could relate to the backbone α relaxation into the unperturbed amorphous phase while the next relaxation could result from the backbone α relaxation into amorphous phase perturbed by the presence of the crystal domains. The Arrhenius plots of the first relaxation show a stronger curvature found in each of the transparent samples indicating strong dependency on specific volume. The second one in the case of transparent films and the first one for opaque samples might be approximate to straight lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
As a model system, thin films of trisilanolphenyl‐POSS (TPP) and two different number average molar mass (5 and 23 kg mol?1) poly(t‐butyl acrylate) (PtBA) were prepared as blends by Langmuir–Blodgett film deposition. Films were characterized by ellipsometry. For comparison, bulk blends are prepared by solution casting and the samples are characterized via differential scanning calorimetry. The increase in Tg as a function of TPP content for bulk high and low molar mass samples are in the order of ~10 °C. Whereas bulk Tg shows comparable increases for both molar masses (~10 °C), the increase in surface Tg for higher molar mass PtBA is greater than for low molar mass (~22 °C vs. ~10 °C). Nonetheless, the total enhancement of Tg is complete by the time 20 wt % TPP is added without further benefit at higher nanofiller loads. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 175–182  相似文献   

7.
The temperature transitions for a series of flexible polymers containing propylene units were studied by dynamic mechanical spectroscopy. It was found that the gradual activation of the local motion of different structural units involved in polymers occurs with increasing temperature. Initially, the rotation of the side groups, such as side methyl groups, is activated and on further heating the main chain structural units show their local motions. It is important that the temperature interval of the appearance of the local motion of each structural unit is almost independent of the presence of other structural units. Accordingly, the polymers investigated can be divided into two groups. The activation of the local motion of the most rigid structural unit determines the glass transition in the first group of polymers. The glass transition of the polymers of the second group takes place at a higher temperature which depends on the content of side methyl groups and the intermolecular interaction. The increased influence of both these factors on the cooperative amorphous motion of polymers of the second group leads to their increased Tg values.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
The viscoelastic properties of various crosslinked natural rubbers, NR, were investigated by mechanical spectroscopy. The glass transition temperature, Tg, was found to be dependent on both the crosslink density and the crosslink type. Higher values of Tg were obtained for sulfur-crosslinked NR than for peroxide-crosslinked NR at the same crosslink density. The greater influence of the sulfur content on Tg may be attributed to polysulfidic crosslinks and cyclic sulfide structures favored at high sulfur contents. Sulfur-vulcanized NRs with monosulfidic crosslinks, favored at relatively high accelerator/sulfur ratios, have properties more similar to the peroxide-cured NR with simple carbon(SINGLE BOND)carbon crosslinks covalent bonds, resulting in only small shifts in Tg. A qualitative analysis of monosulfidic crosslinks and polysulfidic structures was performed with 13C solid-state NMR spectroscopy. The storage modulus, E′, in the rubbery plateau region increased with increasing crosslink density. However, the crosslink type did not influence the moduli values as much as it influenced the Tg values. Different methods of detecting the crosslink density were also discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Polystyrene‐based ionomers possessing sodium methacrylate (MA) and sodium styrenesulfonate (SS) units in each polymer chain [poly(styrene‐co‐methacrylate‐co‐styrenesulfonate) (PSMA‐SS)] were synthesized. The dynamic mechanical properties of PSMA‐SS ionomers were studied and compared with those of styrene ionomers containing only MA (PSMA ionomer) or SS (PSS ionomer) units. It was observed that the ionic moduli of PSMA‐SS ionomers depended directly on the total ion content and that the ionic modulus was highest for the PSMA ionomer and lowest for the PSMA‐SS ionomer. The matrix Tgs of the three ionomer systems were found to be similar to each other; the cluster Tg of PSMA‐SS ionomer was higher than that of PSS ionomer at low SS contents but became closer to each other at high SS contents. In addition, the small‐angle X‐ray scattering study revealed that the multiplet size might be in the following order: PSMA‐SS > PSS > PSMA. This implied that at the same ion content, the fractions of cluster regions were smallest for PSMA‐SS ionomer in comparison with those of PSS or PSMA ionomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
 Sol and Gel state properties of aqueous gelatin solutions of concentrations 4%, 6%, 8% and 10% (w/v) have been investigated through dielectric relaxation studies done at various temperatures in the range T=20–60 °C carried out over a frequency range f=20 Hz–10 MHz and no relaxation of any nature was observed. The sharp transition observed at the gelation temperature T gel provided an excellent matching with the same measured through differential scanning calorimetry (DSC). The capacitance (C p) values above f=100 kHz became increasingly negative as the gel was melted to the sol state. However, in the gel state C p was found to be almost independent of temperature for frequencies above 100 kHz. At frequencies lower than 10 kHz, C p measured was ∼105 F, implying pronounced interfacial polarization either due to electro-chemical reaction or because of ions getting trapped at some interface within the bulk. Received: 10 February 1997 Accepted: 2 September 1997  相似文献   

11.
 The effects of physical ageing on both glass transitions of isotactic polypropylenes (homopolymer and random copolymer)are investigated by isothermal dynamic mechanical spectroscopy and by low strain creep. The ageing-time dependent expressions of the amorphous fractions which undergo each relaxation are introduced in a rheological model composed by a modified Zener model (associated to the β-relaxation) in series with a γ-element (associated to the α-relaxation). The agreement between the responses of this model and the creep and dynamic results is good over a time (or frequency) range covering up to 15 decades for three kinds of isotactic polypropylenes. Received: 2 January 1996 Accepted: 16 August 1996  相似文献   

12.
13.
The dynamic mechanical properties of Nafion® 117 have been measured in‐plane parallel and perpendicular to the lamination direction in a specially designed humidity cell, which allows measurement of the stiffness and mechanic loss under fuel cell relevant temperature and humidity conditions (50–100% relative humidity, 30–120 °C). The results obtained at different temperature–humidity conditions are compared with the mechanical behavior of the dry as well as the membrane saturated with liquid water. Different regimes of change in mechanical properties were found, although in general water acts as a plasticizer in Nafion®. At elevated temperatures it stiffens the membrane by stabilizing the network of hydrophilic clusters. An intermediate increase of mechanical strength at very low humidity levels is attributed to an enforcement by formation of hydrates and hydrogen bridge bonds between vicinal sulfonic acid groups. This increase is significant for the protonated state of the membrane and disappears after ion exchange. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 786–795, 2005  相似文献   

14.
A series of Diels–Alder (DA) crosslinked polymethacrylate networks covering a broad range of glass-transition temperatures (Tg) was prepared to establish the relationship between the Tg and the thermal decrosslinking behavior of these networks. A series of permanently crosslinked and uncrosslinked analogues were also prepared to better understand the thermoset-to-thermoplastic transition occurring in the DA networks at elevated temperatures. The network series were studied using dynamic mechanical analysis, which established an inverse relationship between Tg and decrosslinking ability. Differential scanning calorimetry confirmed the viability of the DA linkages in all formulations, and a trapping experiment with 9-anthracenemethanol demonstrated that even the least responsive network was capable of undergoing decrosslinking given appropriate thermal treatment. While polymer chain mobility has long been understood to be a critical factor in healable materials, this work verifies the importance of this parameter in the decrosslinking of DA networks. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 193–203  相似文献   

15.
The present work reports on the synthesis and evaluation of a crosslinkable thiolated gelatin derivative. The effect of varying two parameters including the pH of the reaction buffer and the thiolating agent applied (i.e. N-acetylhomocysteine thiolactone versus Traut’s reagent) on the obtained modification degree was studied in a first part. The gelatin derivatives synthesized starting from N-acetylhomocysteine thiolactone and Traut’s reagent were characterized in depth using size exclusion chromatography and UV–VIS spectrophotometry. In a subsequent part of the present work, hydrogel films were prepared starting from the thiolated gelatin derivative developed using N-acetylhomocysteine thiolactone. The contributions of both the chemical and the physical crosslinking of the hydrogels developed were studied in depth using rheology, swelling experiments and texturometry. The results indicate that the physical structuring, inherent to gelatin, contributes to a large extent to the mechanical properties. However, the chemical crosslinking mostly determines the final hydrogel properties and can be controlled to a large extent. The gelatin-based gels are flexible, strong and transparent. A major advantage of disulfide-crosslinked hydrogels is the fact that the crosslinking is reversible. The latter could be interesting in view of future applications as cell carriers for tissue engineering.  相似文献   

16.
17.
Films of alginate and gelatin, cross-linked with Ca2+, with ciprofloxacin hydrochloride as model drug incorporated in different concentrations, were obtained by a casting/solvent evaporation method. Chemical, morphological and mechanical properties characterization was carried out, as well as the studies of the factors that influence the drug releasing from alginate and gelatin films. These factors included the component ratio of alginate and gelatin, the loaded amount of ciprofloxacin hydrochloride, the pH and ionic strength of the release solution, the thickness of the drug loaded films and the cross-linking time with Ca2+ and others. The best values of the tensile strength at 101.5 MPa and breaking elongation at 19.4% of blend films were obtained when the gelatin content was 50 wt.%. The results of controlled release tests showed that the amount of ciprofloxacin hydrochloride released decreased with an increase in the proportion of gelatin present in the film. Moreover, the release rate of drug decreased as the amount of drug loaded in the film increased. The alginate/gelatin films were also sensitive to pH and ionic strength. For pH 7.4 the drug release was faster compared to pH 3.6, being simultaneously accelerated by a higher ionic strength. It was observed that in simulated intestinal fluid, the thickness of the film increased from 30 μm to 55 μm with a concomitant reduction of the ciprofloxacin hydrochloride concentration from 100% to 83.5%. When the cross-linking time of these films in the Ca2+ solution were 0 min, 5 min, 15 min and 30 min, the drug release rate attained 100%, 100%, 77.6% and 52.4%, respectively, within 24 h. All the results indicated that the alginate/gelatin film was potentially useful in drug delivery systems.  相似文献   

18.
Highly branched perfluorinated aromatic polyether copolymers were prepared from the polycondensation of the AB2 monomer, 3,5‐bis[(pentafluorobenzyl)oxy]benzyl alcohol with a variety of fluoroaryl and alkyl bromide AB comonomers. The structures and comonomer distribution of the resulting polymers were characterized in detail. 1H NMR data from kinetic trials illustrated that perfluoroaryl AB comonomer distribution correlated to AB comonomer sterics. 19F NMR data revealed that fluorinated AB monomers and 3‐bromo‐1‐propanol AB monomers were distributed within the AB2 polymer backbone, while longer alkyl bromide AB monomers, 6‐bromo‐1‐hexanol, were mostly distributed along hyperbranched polymer chain ends. In general, as AB comonomer incorporation increased for nonsterically hindered copolymers, thermal decomposition onset increased and glass transition temperatures decreased. The combined data demonstrated the effect of comonomer distribution and sterics on physical properties of AB2‐based polymer systems. The resulting materials were used to cast thin polymer films for measurement of contact angle, which were shown to be directly related to comonomer content. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1880–1894  相似文献   

19.
Polydiolcitrates are an emerging class of biocompatible polyesters with a great potential in the field of biomedicine and packaging for food and drug materials. In this work, a new type of (co‐)polydiolcitrates made of citric acid (CA) and ethylene glycol (EG) and/or poly(ethylene glycol) (PEG) is investigated. By varying both the EG/PEG and the CA/diol molar ratios, materials exhibiting very different swelling behavior, mechanical and thermal properties are obtained. In particular, the substitution of EG segments with longer and flexible PEG ones results in an increase in crosslinking density, with remarkable effects on swelling capacity, glass transition temperature, and Young modulus. Moreover, polyesters with CA/diol molar ratio equal to 1:1 exhibit shape memory properties, with full capacity of keeping the temporary shape and high capacity of recovering the original shape. This work demonstrates that the appropriate choice of polyester composition allows modulating the sample properties, that permits to these materials to cover a wide range of possible applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3713–3720  相似文献   

20.
The continuous‐multilayer model introduced in our previous study for the Tg behavior of thin films is adapted to nanocomposite systems. Tg enhancement in both thin films and nanocomposites with attractive interfacial interactions can be explained by the same model. Various shapes of nanoparticles are proposed to rationalize the adaptation of the one‐dimensional model for the Tg behavior of thin film to three‐dimensional system such as nanocomposite. The tendency of predicted Tg enhancements in poly(methyl methacrylate) and P2VP nanocomposites with silica particles are qualitatively fit to experimental data in literatures. For the further quantitative fitting, the model is partially modified with the consideration for other factors affecting Tg deviation in nanocomposite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2281–2287, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号