首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When designing vehicle suspension systems, it is well-known that spring and damper characteristics required for good handling on a vehicle are not the same as those required for good ride comfort. Any choice of spring and damper characteristic is therefore necessarily a compromise between ride comfort and handling. The compromise is more pronounced on off-road vehicles, as they require good ride comfort over rough off-road terrain, as well as acceptable on-road handling. In this paper, the ride comfort vs. handling compromise for off-road vehicles is investigated by means of three case studies. All three case studies indicate that the spring and damper charcteristics required for ride comfort and handling lie on opposite extremes of the design space. Design criteria for a semi-active suspension system, that could significantly reduce, or even eliminate the ride comfort vs. handling compromise, are proposed. The system should be capable of switching safely and predictably between a stiff spring and high damping mode (for handling) as well as a soft spring and low damping mode (for ride comfort). A possible solution to the compromise, in the form of a four state, semi-active hydropneumatic spring-damper system, is proposed.  相似文献   

2.
The CRONE suspension, French acronym of “suspension à Comportement Robuste d’Ordre Non Entier”, results from a traditional suspension system whose spring and damper are replaced by a mechanical and hydropneumatic system defined by a fractional (so-called non-integer) order force–displacement transfer function. ‘ling, frequency-domain robust control design methodology, optimal approach, stability analysis and performance are presented in this paper.  相似文献   

3.
Semi-active hydro-gas suspension system for a tracked vehicle   总被引:1,自引:0,他引:1  
A semi-active hydro-gas suspension is proposed for a tracked vehicle to improve ride comfort performance, without compromising the road holding and load carrying capabilities of the passive suspension. This is achieved through an active damper used in parallel with a gas spring. The suspension damper parameters are varied by a control mechanism based on sky-hook damping theory, which alters the flow characteristics. A damper prototype has been developed, tested for its flow characteristics, after which it has been integrated into an existing hydro-gas suspension system. An analytical model has been proposed from first principles rather than developing a phenomenological model based on experimental characteristics. This model is validated with experiments carried out on a suspension test rig. In order to compare the performance with the original passive system, an in-plane vehicle model is developed and the simulations clearly show that the semi-active system performance is superior to the passive system.  相似文献   

4.
This paper is concerned with the development of a semi-active hydropneumatic spring and damper system, comprising of a two state hydropneumatic spring and a two state hydraulic damper. The system was specifically developed to improve the ride comfort and handling of large off-road vehicles. The suspension requirements for good ride comfort and handling for heavy off-road vehicles are discussed with special reference to the advantages of semi-active hydropneumatic springs and semi-active dampers. The layout and functioning of an experimental spring and damper unit used for laboratory tests are discussed. Spring and damper characteristics, as well as valve response times for both the semi-active spring and semi-active damper were determined. A single degree of freedom test rig with a sprung mass of 3 tons was used to perform first order ride comfort tests. Tests include step response and random input response. The test rig was also used to evaluate semi-active control strategies for both spring and damper as well as a control strategy for implementing ride height adjustment without using an external hydraulic pump.  相似文献   

5.
This paper presents ride comfort and driving stability performances of electronic control suspension (ECS) equipped with controllable electrorheological (ER) damper and appropriate control strategy. In order to achieve this goal, a cylindrical type ER damper which is applicable to Macpherson strut type suspension of a mid-sized passenger vehicle is designed and manufactured on the basis of the required damping force level of an existing passenger vehicle. After experimentally evaluating the field-dependent damping force and dynamic characteristics of the controllable ER damper, ECS consisting of sprung mass, spring, tire and controller is established in order to investigate the ride comfort and driving stability performances. On the basis of the governing equation of motion of the suspension system, five control strategies (soft, hard, comfort, sports and optimal mode) are formulated. The proposed control strategies are then experimentally realized with the quarter-vehicle ECS system. Control performances such as vertical acceleration of the car body and tire deflection are evaluated in both time and frequency domains under various road conditions. In addition, a comparative work is undertaken to investigate inherent control characteristics of each control strategy.  相似文献   

6.
主要针对长阻尼孔形式下的流体阻尼器进行分析,在三参数模型的基础上研究了流体粘性发热对流体阻尼力的反馈作用,从而建立了含热能转换与热交换的阻尼器的动力学模型,同时对系统的热平衡状态进行了分析。最后通过数值分析对该时变系统从时域和频域上讨论了粘性发热对隔振效果的影响,发现温度变化对共振频率的漂移及幅值大小的影响较大。  相似文献   

7.
通过对磁流变阻尼器sigmoid模型进行数值计算分析,揭示了各参数对该模型阻尼力的影响,证明了通过合理有效地选择参数可设计出符合工程实际应用的磁流变阻尼器.对确定性激励下磁流变阻尼器的Sigmoid模型进行了理论分析.指出了采用非线性的阻尼器模型能更精确地描述汽车悬架的振动特性.从而证明了磁流变阻尼器有良好的使用价值和Sigmoid模型磁流变阻尼器在汽车控制工程应用中的可行性.  相似文献   

8.
Jiang  Min  Rui  Xiaoting  Yang  Fufeng  Zhu  Wei  Zhu  Hongtao  Han  Wenjiao 《Nonlinear dynamics》2023,111(9):8191-8215

Aiming at the problem that the damping coefficient of the traditional hydro-pneumatic spring cannot be adjusted in real-time, the magnetorheological (MR) damping technology was introduced into the traditional hydro-pneumatic spring with single gas chamber. A new shear-valve mode MR hydro-pneumatic spring was proposed. And its dynamic performance was analyzed based on multi-physical coupling simulation and mechanical property test. Firstly, a structural scheme of MR hydro-pneumatic suspension was proposed to ensure the original height adjustment function based on the working principle of traditional hydro-pneumatic suspension with single gas chamber. Secondly, based on the design requirements, the parameter of MR hydro-pneumatic spring damping structure was designed by using MR damper design method. Thirdly, the multi-physical coupling dynamic performance of the MR hydro-pneumatic spring damping structure was analyzed based on the electromagnetic field analysis theory, flow field analysis theory and thermal field analysis theory. The analysis results showed that the designed MR hydro-pneumatic spring has reasonable magnetic circuit structure and excellent working performance. Then, the mechanical properties of MR hydro-pneumatic spring were tested. The results showed that the maximum damping force can reach 20 kN, and the dynamic adjustable multiple can reach 6.4 times. It has good controllability and meets the design requirements. Finally, a nonlinear model of MR hydro-pneumatic spring was established based on the elastic force calculation model of the gas and the Bouc–Wen model. The simulation results of the established model agree well with the experimental results, which can accurately describe the dynamic properties of the hydro-pneumatic spring. The proposed design and modeling method of the MR hydro-pneumatic spring can provide a theoretical basis for the related vibration damping devices.

  相似文献   

9.
This work develops an analytical approach to optimally design electrorheological (ER) dampers, especially for vehicle suspension system. The optimal design considers both stability and ride comfort of vehicle application. After describing the schematic configuration and operating principle of the ER damper, a quasi-static model is derived on the basis of Bingham rheological laws of ER fluid. Based on the quasi-static model, the optimization problem for the ER damper is built. The optimization problem is to find optimal value of significant geometric dimensions of the ER damper, such as the ER duct length, ER duct radius, ER duct gap and the piston shaft radius, that maximize damping force of the ER damper. The two constrained conditions for the optimization problem are: the damping ratio of the damper in the absence of the electric field is small enough for ride comfort and the buckling condition of the piston shaft is satisfied. From the proposed optimal design, the optimal solution of the ER damper constrained in a specific volume is obtained. In order to evaluate performance of the optimized ER damper, simulation result of a quarter-car suspension system installed with the optimized ER damper is presented and compared with that of the non-optimized ER damper suspension system. Finally, the optimal results of the ER damper constrained in different volumes are obtained and presented in order to figure out the effect of constrained volume on the optimal design of ER damper.  相似文献   

10.
本文研究一种新型非线性阻尼器——滞回摩擦型调谐惯质阻尼器(HFTID)在工程结构抗震控制中的应用。HFTID由调谐惯质阻尼器(TID)和滞回弹簧摩擦元件并联组成。首先通过谐波平衡方法推导了HFTID单自由度系统力与位移的传递率。然后对HFTID进行了最佳调谐参数优化,得到HFTID最优参数的近似表达式,比较了HFTID和TID振动控制系统的减振效果。结果表明,HFTID相比TID可以进一步降低振动控制系统的传递率。最后,以一栋多层隔震结构为例,将HFTID与TID的隔震效果进行了对比,结果表明,HFTID相比TID在降低地震响应峰值和均方根值方面具有更大优势,验证了HFTID在降低地震响应方面的有效性和实用性。HFTID在建筑和桥梁结构抗震、车辆悬挂系统和其他机械隔震问题上具有潜在的应用前景。  相似文献   

11.
The work focuses on autoparametric vibrations of system composed of a non-linear oscillator with an attached pendulum. A combination of semi-active damper together with a non-linear spring mounted in the suspension of system is proposed. The spring is made from a shape memory alloy (SMA) while damping is realized through a magnetorheological (MR) damper. The MR damper is used for controlling damping of the system, SMA spring is used to change system׳s stiffness. The system is solved numerically and verified experimentally on a custom made experimental rig. Specifically, non-linear resonances are investigated, and their influence on the system dynamics and absorption effect.  相似文献   

12.
When developing any simulation model some compromise must be made between computational efficiency and the accuracy of the model. This study compares the performance of three ideal gas (IG) law variations (IG with the energy equation (EE), isothermal and adiabatic), and two real gas approaches (Benedict Webb Rubin (BWR) equation with and without the EE) to model the spring force of a hydropneumatic suspension. These models are compared with experimental data obtained from laboratory tests on a single hydropneumatic suspension unit. Both the BWR and IG models with the EE offer a significant improvement in correlation compared to the models without the EE. The real gas BWR approach offers a small improvement over the IG approach under the test conditions. The best (BWR with EE) and worst (IG isothermal) models are then used to model the spring forces in a full vehicle model of a 4 × 4 Sports Utility vehicle (SUV). The data is again compared with experimental results and the BWR model with the EE correlates significantly better than the IG isothermal model. It is thus concluded that the inclusion of the EE will yield significantly better results and it should only be omitted if the parameters investigated are not sensitive to errors in the spring model.  相似文献   

13.
In this paper, we mount semi-active suspensions between the wheels and platform of a robotic vehicle to absorb the vibrations caused by movement over rough terrain. The semi-active suspension consists of a spring and a magneto-rheological damper. By combining the dynamic model of the suspended robotic vehicle and the control model of the damper, we propose a new methodology to evaluate the dynamic stability of the vehicle. The model considers the configuration of semi-active suspensions and the road-holding ability of robotic vehicles. Based on the stability criterion, we use the particle swarm optimization method to search the optimum semi-active damping characteristics. The control model of the semi-active damper is checked by sinusoidal response analysis. To verify the dynamic stability criterion and the control method, we evaluate the proposed methodology by simulating a rough pavement condition and comparing the effectiveness of the method to a passive suspension. The results show that the proposed stability criterion is feasible, and the optimal control method yields a substantially improved dynamic stability when the vehicle moves through rough terrain.  相似文献   

14.
Tracked vehicles fitted with torsion bar suspensions are limited in their ability to achieve high mobility. This limitation is due to the linear characteristics and the consequent poorer ride performance. Hydro-gas suspensions due to their inherent non-linear behavior can provide higher mobility and better ride comfort performance. The hydro-gas suspension model has usually been developed from experimental force-displacement characteristics, which requires availability of suspension hardware.In this paper, a hydro-gas suspension system is modeled using polytropic gas compression model to represent the spring characteristics, while the damper orifices are modeled using hydraulic conductance. The analytical model is then validated with experiments individually for spring and damper flow characteristics and then as a suspension-wheel assembly in a test rig. The validated suspension model is incorporated in an in-plane model. Using this model, simulation is carried out for sinusoidal inputs of different wavelengths, amplitudes and vehicle speeds. The simulation model is validated with data measured on a vehicle traversing an APG course. The proposed model agrees very well with the measured data. Based on the validated model, studies on the influence of suspension parameters on the ride comfort of a tracked vehicle are carried out.  相似文献   

15.
剪切阀式磁流变减振器力学特性实验研究   总被引:3,自引:0,他引:3  
熊超  郑坚  吕建刚  张进秋 《实验力学》2004,19(3):329-334
本文对剪切阀式磁流变减振器的结构和工作原理作了介绍,基于平板模型对其结构进行简化,采用叠加法得出了其阻尼力的理论计算模型。利用材料试验机(MTS)分别在不同电流、振幅、速度和频率等条件下,对自行研制的剪切阀式磁流变减振器的动态特性进行了实验研究,得出了相应的实验曲线。实验结果表明剪切阀式磁流变减振器具有优良的电控阻尼力特性,且振幅、速度和频率等因素对其阻尼力有着重要影响,另外也对其阻尼力的理论计算公式作了验证。  相似文献   

16.
磁流变液阻尼器的分数阶Bingham模型结构形式简单, 而且可以更好地描述系统的滞回特性. 建立了含有分数阶Bingham模型的单自由度1/4车辆悬架系统模型, 利用磁流变液阻尼器对在路面简谐激励下的非线性车辆悬架系统进行振动控制. 研究了含有分数阶Bingham模型的悬架系统在天棚阻尼半主动控制下的主共振响应, 利用平均法得到了系统的近似解析解. 求解了系统定常解的幅频响应方程, 并根据李雅普诺夫稳定性理论得到了悬架系统的稳定性条件. 通过绘制数值解和解析解的幅频响应曲线对比图, 验证了近似解析解的正确性. 利用簧载质量垂直方向的加速度均方根值分析了半主动控制对车辆乘坐舒适性的影响, 发现天棚阻尼半主动控制策略在低频激励区域反而会降低车辆的乘坐舒适性. 因此提出了一种被动控制与半主动控制相结合的组合控制策略, 并分析了半主动控制参数对振动控制效果的影响. 分析结果表明, 该组合控制策略不但能够提高车辆的乘坐舒适性, 而且能有效抑制悬架系统的主共振振动幅值.   相似文献   

17.
This paper addresses the dynamic properties of automotive shock absorber modules. Analyzing an equivalent linear system, a set of characteristic dimensionless numbers are introduced in order to qualify the dynamic performance of the damper and the damper module. The dependency of these numbers on the main parameters of the module like the damping constant, the spring stiffness of the damper, the top mount stiffness and the piston rod mass is shown. These numbers may also serve as similarity coefficients for quite different dampers regarding their dynamic behavior. Furthermore, they can be used to adjust the stiffness of the different force elements of the damper module to achieve an optimal damping quality.  相似文献   

18.
This paper reports on an investigation to determine the spring and damper settings that will ensure optimal ride comfort of an off-road vehicle, on different road profiles and at different speeds. These settings are required for the design of a four stage semi-active hydro-pneumatic spring damper suspension system (4S4). Spring and damper settings in the 4S4 can be set either to the ride mode or the handling mode and therefore a compromise ride-handling suspension is avoided. The extent to which the ride comfort optimal suspension settings vary for roads of different roughness and varying speeds and the levels of ride comfort that can be achieved, are addressed. The issues of the best objective function to be used when optimising and if a single road profile and speed can be used as representative conditions for ride comfort optimisation of semi-active suspensions, are dealt with. Optimisation is performed with the Dynamic-Q algorithm on a Land Rover Defender 110 modelled in MSC.ADAMS software for speeds ranging from 10 to 50 km/h. It is found that optimising for a combined driver plus rear passenger seat weighted root mean square vertical acceleration rather than using driver or passenger values only, returns the best results. Results indicate that optimisation of suspension settings using one road and speed will improve ride comfort on the same road at different speeds. These settings will also improve ride comfort for other roads at the optimisation speed and other speeds, although not as much as when optimisation has been done for the particular road. For improved ride comfort damping generally has to be lower than the standard (compromised) setting, the rear spring as soft as possible and the front spring ranging from as soft as possible to stiffer depending on road and speed conditions. Ride comfort is most sensitive to a change in rear spring stiffness.  相似文献   

19.
邹广平  张冰  唱忠良  刘松 《力学学报》2018,50(5):1125-1134
金属丝网橡胶材料是一种完全由金属丝编织成的多孔复合材料,与传统螺旋卷制金属橡胶材料相比,其改进了成型工艺,剔除了制备过程中大量的手工工艺干扰,提高机械化程度,重合度更高,拥有更稳定的力学性能.由于金属丝网橡胶材料具有承载能力高、阻尼大、耐高温、耐低温、耐老化、抗油抗腐蚀等优良特性,在很多方面强于传统橡胶,多用于航空航天、船舶、军事武器等军工工业.弹簧$\!$-$\!$-$\!$金属丝网橡胶组合减振器具有可设计刚度和较高承载能力,但因其具有复杂的非线性迟滞特性,目前相关材料的本构模型还难以准确描述其力学特性.本文在弹簧$\!$-$\!$-$\!$金属丝网橡胶组合减振器静态迟滞力学性能实验的基础上,结合其干摩擦阻尼迟滞特性,提出了一种迟滞力学性能理论模型.根据减振器迟滞实验恢复力$\!$-$\!$-$\!$位移曲线特点,利用参数分离的方法将迟滞曲线分解为弹性恢复力和干摩擦阻尼力,分别建模求解等效刚度和干摩擦阻尼系数,以此建立了组合减振器理论模型,并与实验结果进行对比及进行误差分析,验证了理论模型的准确性.   相似文献   

20.
The CRONE Suspension: Management of the Dilemma Comfort-Road Holding   总被引:2,自引:0,他引:2  
The CRONE suspension, French acronym of suspension à Comportement Robuste dOrdre Non Entier, results from a traditional suspension system whose spring and damper are replaced by a mechanical and hydropneumatic system defined by a fractional (so-called non-integer) order force–displacement transfer function. ling, frequency-domain robust control design methodology, optimal approach, stability analysis and performance are presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号