首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison is made between static headspace analysis and headspace solid-phase dynamic extraction (HS-SPDE) for the quantitative determination of trace level BTEX solvents (benzene, toluene, ethylbenzene and o-, m-, and p-xylene) in soft drinks. Two non-polar extraction phases were investigated for SPDE using an automated sampler with a gas-tight syringe equipped with a special needle coated on the inside with the extraction phase. Following adsorption onto the phase, the analytes were thermally desorbed directly into a GC-MS. The techniques were optimised and evaluated by analysis of spiked soft drink samples. The use of the SPDE device gave comparable results to the static headspace method, with lower detection limits for some compounds, and also offers advantages for applications where lower temperatures are preferred.  相似文献   

2.
Solid-phase dynamic extraction (SPDE) belongs to the most innovative sample preparation and enrichment techniques. However, there is still a lack of knowledge on the fundamentals of SPDE and its applicability in the field of environmental monitoring. A homemade sampling device is constructed to make a detailed study of SPDE kinetics for toluene extraction. It proved that at least 50 aspirating and dispensing cycles were necessary to obtain toluene equilibration between gas and coating phase. A mechanistic model is proposed to explain that in every dispensing step during SPDE, significant losses of retained analytes (up to 48%) occur due to desorption processes. A new accelerated solid-phase dynamic extraction procedure (ASPDE) has been developed that avoids dispensing stages during extraction. The resulting extraction time proves to be 1.7 min, being a reduction by a factor of 37 compared with the SPDE extraction time. ASPDE proved to have high potential in ambient/indoor air monitoring. The limit of detection for toluene was determined to be 56 ppb(v), i.e. a factor of respectively, 6 and 35 lower than obtained with SPME and conventional headspace sampling with gas syringe.  相似文献   

3.
In the present study a headspace solid-phase dynamic extraction method coupled to gas chromatography–mass spectrometry (HS-SPDE-GC/MS) for the trace determination of volatile halogenated hydrocarbons and benzene from groundwater samples was developed and evaluated. As target compounds, benzene as well as 11 chlorinated and brominated hydrocarbons (vinyl chloride, dichloromethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, carbon tetrachloride, chloroform, trichloroethylene, tetrachloroethylene, bromoform) of environmental and toxicological concern were included in this study. The analytes were extracted using a SPDE needle device, coated with a poly(dimethylsiloxane) with 10% embedded activated carbon phase (50-μm film thickness and 56-mm film length) and were analyzed by GC/MS in full-scan mode. Parameters that affect the extraction yield such as extraction and desorption temperature, salting-out, extraction and desorption flow rate, extraction volume and desorption volume, the number of extraction cycles, and the pre-desorption time have been evaluated and optimized. The linearity of the HS-SPDE-GC/MS method was established over several orders of magnitude. Method detection limits (MDLs) for the compounds investigated ranged between 12 ng/L for cis-dichloroethylene and trans-dichloroethylene and 870 ng/L for vinyl chloride. The method was thoroughly validated, and the precision at two concentration levels (0.1 mg/L and a concentration 5 times above the MDL) was between 3.1 and 16% for the analytes investigated. SPDE provides high sensitivity, short sample preparation and extraction times and a high sample throughput because of full automation. Finally, the applicability to real environmental samples is shown exemplarily for various groundwater samples from a former waste-oil recycling facility. Groundwater from the site showed a complex contamination with chlorinated volatile organic compounds and aromatic hydrocarbons. Figure SPDE Principle  相似文献   

4.
目的建立检测黏胶剂中苯系物的方法。方法用顶空直接进样气相色谱法测定黏胶剂中的苯、甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯以及苯乙烯7种组分,对气相色谱柱、顶空加热温度以及顶空提取时间进行了讨论。结果对苯乙烯等7种被测组分的检测限均小于5mg/kg,7种组分在毛细管柱中能够很好的分离,回收率范围为81%~94%,RSD为5%~10%,具有操作简单、快速等特点。结论能够满足对黏胶剂中苯系物测定的分析要求。  相似文献   

5.
A new method combination, headspace solid-phase dynamic extraction coupled with gas chromatography/tandem mass spectrometry (HS-SPDE/GC/MS/MS), is introduced to determine drugs of abuse in hair samples. This highly automated procedure utilizes SPDE for pre-concentration and on-coating derivatization as well as GC and triple quadrupole MS/MS for selective and sensitive detection. All these steps, apart from washing and cutting of the hair samples, are performed without manual intervention on a robot-like autosampler.SPDE is a solventless extraction technique related to solid-phase microextraction (SPME). The analytes are absorbed from the sample headspace directly into a hollow needle with an internal coating of polydimethylsiloxane by repeated aspirate/dispense cycles.The HS-SPDE/GC/MS/MS procedure was applied to the analysis of methadone, the trimethylsilyl derivatives of cannabinoids and the trifluoroacetyl derivatives of amphetamines and designer drugs. The method was shown to be sensitive with detection limits between 6 and 52 pg/mg hair matrix and precision between 0.4 and 7.8% by the use of an internal standard technique. Linearity was obtained from 0.1-20 ng/mg with coefficients of correlation between 0.995 and 0.999.Compared with conventional methods of hair analysis, HS-SPDE/GC/MS/MS is easier to use, substantially faster, with the degree of sensitivity and reproducibility demanded in clinical and forensic toxicology. The main advantage of the SPDE technique in relation to SPME is the robustness of the capillary.  相似文献   

6.
Solid-phase microextraction (SPME) with a disposable ionic liquid (IL) coating was developed for headspace extraction of benzene, toluene, ethylbenzene, and xylenes (BTEX) in paints. The SPME fiber was coated with IL prior to every extraction, then the analytes were extracted and desorbed on the injection port of gas chromatography, and finally the IL coating on the fiber was washed out with solvents. The coating and washing out of IL from the fiber can be finished in a few minutes. This disposable IL-coated fiber was applied to determine BTEX in water-soluble paints with results in good agreement with that obtained by using commercially available SPME fibers. For all the four studied paints samples, the benzene contents were under the detection limits, but relatively high contents of toluene, ethylbenzene and xylenes (56-271 microg g(-1)) were detected with spiked recoveries in the range of 70-114%. Compared to the widely used commercially available SPME fibers, this proposed disposable IL-coated fiber has much lower cost per determination, comparable reproducibility (RSD < 11%), and no carryover between each determination. Considering that IL possess good extractability for various organic compounds and metals ions, and that task-specific IL can be designed and synthesized for selective extraction of target analytes, this disposable IL coating SPME might has great potential in sample preparation.  相似文献   

7.
The validation process – in accordance with the recommendation of the International Conference on Harmonization – was performed in order to define and determine the application of the developed procedures for the determination of solvent residues (hexane, benzene, toluene and chlorinated hydrocarbons – trichloromethane, 1,1,1-trichloroethane, tetrachloromethane, trichloroethene, tetrachloroethene) in oil samples. For extraction and preconcentration of analytes, two simple sample preparation techniques – static headspace analysis (HSA) and solid phase microextraction (SPME) – have been used. Gas chromatography with a flame ionization detector (FID) and electron capture detector (ECD) was applied for the final determination. A critical comparison of developed procedures was conducted considering the values of: limits of detection, concentration ranges, repeatability and uncertainty. The linearity issue was described in details due to the broad measurement ranges of the proposed procedures.  相似文献   

8.
The analysis of samples contaminated by organic compounds is an important aspect of environmental monitoring. Because of the complex nature of these samples, isolating target organic compounds from their matrices is a major challenge. A new isolation technique, solid phase microextraction, or SPME, has recently been developed in our laboratory. This technique combines the extraction and concentration processes into one step; a fused silica fiber coated with a polymer is used to extract analytes and transfer them into a GC injector for thermal desorption and analysis. It is simple, rapid, inexpensive, completely solvent-free, and easily automated. To minimize matrix interferences in environmental samples, SPME can be used to extract analytes from the headspace above the sample. The combination of headspace sampling with SPME separates volatile and semi-volatile analytes from non-volatile compounds, thus greatly reducing the interferences from non-target compounds. This paper reports the use of headspace SPME to isolate volatile organic compounds from various matrices such as water, sand, clay, and sludge. By use of the technique, benzene, toluene, ethyl-benzene, and xylene isomers (commonly known as BTEX), and volatile chlorinated compounds can be efficiently isolated from various matrices with good precision and low limits of detection. This study has found that the sensitivity of the method can be greatly improved by the addition of salt to water samples, water to soil samples, or by heating. Headspace SPME can also be used to sample semi-volatile compounds, such as PAHs, from complex matrices.  相似文献   

9.
We have evaluated the behavior of single-walled carbon nanohorns as a sorbent for headspace and direct immersion (micro)solid phase extraction using volatile organic compounds (VOCs) as model analytes. The conical carbon nanohorns were first oxidized in order to increase their solubility in water and organic solvents. A microporous hollow polypropylene fiber served as a mechanical support that provides a high surface area for nanoparticle retention. The extraction unit was directly placed in the liquid sample or the headspace of an aqueous standard or a water sample to extract and preconcentrate the VOCs. The variables affecting extraction have been optimized. The VOCs were then identified and quantified by GC/MS. We conclude that direct immersion of the fiber is the most adequate method for the extraction of VOCs from both liquid samples and headspace. Detection limits range from 3.5 to 4.3 ng L?1 (excepted for toluene with 25 ng L?1), and the precision (expressed as relative standard deviation) is between 3.9 and 9.6 %. The method was applied to the determination of toluene, ethylbenzene, various xylene isomers and styrene in bottled, river and tap waters, and the respective average recoveries of spiked samples are 95.6, 98.2 and 86.0 %.
Figure
Schematic representation of the direct immersion / headspace (micro)solid phase extraction using oxidized single walled carbon nanohorns supported on a microporous hollow fiber for the extraction of volatile organic compound from water samples.  相似文献   

10.
This paper is concerned with the determination of volatile and semi-volatile organic components in air and gaseous (headspace) samples, focusing primarily on polar analytes. Samples were analyzed by preconcentration on different (ad)sorbents followed by thermal desorption and analysis by capillary gas chromatography. The performance of a cartridge filled with 100% polydimethylsiloxane (PDMS) particles was compared to that of adsorbents like Tenax TA and Carbotrap 300. Though the PDMS phase is non-polar it showed adequate retention for both polar and non-polar components. The blank runs of the PDMS trap were significantly better than those of most adsorbents and did not deteriorate, as was the case with all the conventional adsorbents investigated. With respect to trapping efficiencies, the PDMS phase performed better for most of the analytes under investigation compared to the adsorbents. For a range of analytes including triethylamine, butanone, diacetyl, nicotine, and acetic acid the PDMS phase performed exceptionally well whereas all adsorbents showed unsatisfactory performance. The packed PDMS traps were employed for the determination of organic acids, PAH's and nitro-PAH's in air and for the analysis of the headspace of cacao and hop.  相似文献   

11.
Amphiphilic and hydrophilic oligomers were synthesized and coated on fused silica capillaries using a sol-gel technique. Sol-gel-coated capillaries were evaluated for the solid-phase microextraction and preconcentration of a wide variety of non-polar and polar analytes. Both types of coatings were stable under high temperature (up to 280 degrees C). The extraction efficiency of the sol-gel coatings was evaluated for the extraction of both non-polar and polar analytes, including organochlorine pesticides, triazine herbicides, estrogens and alkylphenols (APs) and bisphenol-A (BPA). Compared with commercially available solid-phase microextraction (SPME) adsorbents such as poly(dimethylsiloxane)divenylbenzene and polyacrylate, the new materials showed comparable selectivity and sensitivity towards both non-polar and polar analytes. The new coatings gave good linearity and detection limits. For example with triazines, a detection limit of <0.005 microl l(-1), precision from 5.0 to 11.0% (n = 6) and linearity of the calibration plots (0.5 to 50 microl l(-1)) were obtained. The sol-gel coated SPME capillaries were used for the determination of triazine herbicides in reservoir water samples collected in Singapore.  相似文献   

12.
High concentration capacity headspace techniques (headspace solid-phase microextraction (HS-SPME) and headspace sorptive extraction (HSSE)) are a bridge between static and dynamic headspace, since they give high concentration factors as does dynamic headspace (D-HS), and are as easy to apply and as reproducible as static headspace (S-HS). In 2000, Chromtech (Idstein, Germany) introduced an inside-needle technique for vapour and liquid sampling, solid-phase dynamic extraction (SPDE), also known as "the magic needle". In SPDE, analytes are concentrated on a 50 microm film of polydimethylsiloxane (PDMS) and activated carbon (10%) coated onto the inside wall of the stainless steel needle (5 cm) of a 2.5 ml gas tight syringe. When SPDE is used for headspace sampling (HS-SPDE), a fixed volume of the headspace of the sample under investigation is sucked up an appropriate number of times with the gas tight syringe and an analyte amount suitable for a reliable GC or GC-MS analysis accumulates in the polymer coating the needle wall. This article describes the preliminary results of both a study on the optimisation of sampling parameters conditioning HS-SPDE recovery, through the analysis of a standard mixture of highly volatile compounds (beta-pinene, isoamyl acetate and linalool) and of the HS-SPDE-GC-MS analyses of aromatic plants and food matrices. This study shows that HS-SPDE is a successful technique for HS-sampling with high concentration capability, good repeatability and intermediate precision, also when it is compared to HS-SPME.  相似文献   

13.
A method for the determination of 15 aromatic hydrocarbons in eluates from solid residues produced during the co-pyrolysis of plastics and pine biomass was developed. In a first step, several sampling techniques (headspace solid phase microextraction (HS-SPME), static headspace sampling (HS), and dispersive liquid-liquid microextraction (DLLME) were compared in order to evaluate their sensitivity towards these analytes. HS-SPME and HS sampling had the better performance, but DLLME was itself as a technique able to extract volatiles with a significant enrichment factor.HS sampling coupled with GC-MS was chosen for method validation for the analytes tested. Calibration curves were constructed for each analyte with correlation coefficients higher than 0.999. The limits of detection were in the range of 0.66-37.85 ng/L. The precision of the HS method was evaluated and good repeatability was achieved with relative standard deviations of 4.8-13.2%. The recoveries of the analytes were evaluated by analysing fortified real eluate samples and were in the range of 60.6-113.9%.The validated method was applied in real eluate samples. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the compounds in higher concentrations.The DLLME technique coupled with GC-MS was used to investigate the presence of less volatile contaminants in eluate samples. This analysis revealed the presence of significant amounts of alkyl phenols and other aromatic compounds with appreciable water solubility.  相似文献   

14.
Young TE  Ecker ST  Synovec RE  Hawley NT  Lomber JP  Wai CM 《Talanta》1998,45(6):1189-1199
Reversed phase high-performance liquid chromatography (RP-HPLC) is demonstrated for hydrophobic analytes such as aromatic hydrocarbons on a chemically bonded stationary phase and a mobile phase consisting of only water. Reversed phase liquid chromatography separations using a water-only mobile phase has been termed WRP-LC for water-only reversed phase LC. Reasonable capacity factors are achieved through the use of a non-porous silica substrate resulting in a chromatographic phase volume ratio much lower than usually found in RP-HPLC. Two types of bonded WRP-LC columns have been developed and applied. A brush phase was synthesized from an organochlorosilane. The other phase, synthesized from an organodichlorosilane, is termed a branch phase and results in a polymeric structure of greater thickness than the brush phase. A baseline separation of a mixture containing benzaldehyde, benzene, toluene, and ethyl benzene in less than 5 min is demonstrated using a water mobile phase with 12 000 plates generated for the unretained benzaldehyde peak. The theoretically predicted minimum reduced plate height is also shown to be approached for the unretained analyte using the brush phase. As an application, subcritical water extraction (SWE) at 200°C is combined with WRP-LC. This combination allows for the extraction of organic compounds from solid matrices immediately followed by liquid chromatographic separation of those extracted compounds all using a solvent of 100% water. We demonstrate SWE/WRP-LC by spiking benzene, ethyl benzene, and naphthalene onto sand then extracting the analytes with SWE followed by chromatographic separation on a WRP column. A sand sample contaminated with gasoline was also analyzed using SWE/WRP-LC. This extraction process also provides kinetic information about the rate of analyte extraction from the sand matrix. Under the conditions employed, analytes were extracted at different rates, providing additional selectivity in addition to the WRP-LC separation.  相似文献   

15.
A comparison is made between static headspace analysis and stir bar sorptive extraction (SBSE) for the quantitative determination of furan. The SBSE technique was optimised and evaluated using two example food matrices (coffee and jarred baby food). The use of the SBSE technique in most cases, gave comparable results to the static headspace method, using the method of standard additions with d4-labelled furan as an internal standard. Using the SBSE method, limits of detection down to 2 ng g−1 were achieved, with only a 1 h extraction. The method was performed at ambient temperatures, thus eliminating the possibility of formation of furan during extraction.  相似文献   

16.
Feng J  Sun M  Xu L  Li J  Liu X  Jiang S 《Journal of chromatography. A》2011,1218(43):7758-7764
Polymeric 1-vinyl-3-octylimidazolium hexafluorophosphate was synthesized in situ on stainless steel wire by surface radical chain-transfer polymerization and used as sensitive coatings in solid-phase microextraction. The outer surface of the stainless steel wire was firstly coated with microstructured silver layer via silver mirror reaction and then functionalized with self-assembled monolayers of 1,8-octanedithiol, which acted as chain transfer agent in the polymerization. Coupled to gas chromatography, extraction performance of the fiber was studied with both headspace and direct-immersion modes using benzene, toluene, ethylbenzene and xylenes (BTEX), phenols and polycyclic aromatic hydrocarbon (PAHs) as model analytes. In combination with the microstructured silver layer, the PIL-coated fiber exhibited high extraction efficiency. Linear ranges for BTEX with headspace mode were in the range of 0.2-1000 μg L(-1) for benzene, and 0.1-1000 μg L(-1) for toluene, ethylbenzene and xylenes. Limits of detection (LODs) were from 0.02 to 0.05 μg L(-1). Wide linear ranges of direct-immersion mode for the extraction of several phenols and PAHs were also obtained with correlation coefficients (R) from 0.9943 to 0.9997. The proposed fiber showed good durability with long lifetime. RSDs of 56 times extraction were still in an acceptable range, from 8.85 to 22.8%.  相似文献   

17.
The advantages of surfactant-coated carbon nanotubes (CNTs) as coadjutants in liquid-liquid extraction are systematically considered. The effect of the CNT state (dispersed or suspended in an aqueous medium) is characterized by the single-component solid-liquid isotherms exemplified for benzene. Adsorption isotherms are obtained by means of a headspace-GC-MS method, the recommended instrumental combination when very volatile compounds are involved. Adsorption studies are completed using toluene and n-undecane as model analytes of aromatic and linear hydrocarbons, respectively. The potential of using dispersed carbon nanotubes to improve liquid-liquid extraction is finally evaluated. The liquid-liquid distribution of the two model analytes between an organic phase (n-heptane) and the aqueous dispersion of CNTs is studied via batch extraction and subsequent analysis of the organic phase by GC-MS. A prospective application of this methodology is also given.  相似文献   

18.
Excessive and uncontrolled exposures of the workers to benzene, toluene, ethylbenzene and xylene (BTEX) have currently raised great concerns among industrial hygienist all over the world. Therefore, the effective monitoring of such exposures is assumed to be of prime importance. A cold fiber solid-phase microextraction device based on a cooling capsule as a cooling unit and CO2 as a coolant was applied to quantitatively analyze BTEX in aqueous samples. A gas chromatography with flame ionization detection was recruited to analyze the target analytes, which had been identified according to their retention times. Several factors such as coating temperature, extraction time and temperature, sample volume and sodium content were optimized. Two modes of extraction, i.e., headspace (HS) and headspace cold fiber (HS-CF) in SPME, were investigated and compared under optimized conditions. The results revealed that HS-CF-SPME has the most appropriate outcome for the extraction of BTEX from aqueous samples. Under the optimized conditions, the calibration curves were linear within the range of 0.2–500 ng ml?1 and the detection limits were between 0.02 and 0.07 ng ml?1.The intraday relative standard deviations was lower than about 10%. The method was successfully applied to the determination of BTEX in urine samples with good recovery.  相似文献   

19.
Summary A simple and rapid procedure based on solid phase disk extraction (SPDE), adsorption chromatography on acidified silica gel and GC-MS analysis was developed for the determination of 8 organochlorine pesticides and 19 PCB congeners in human milk. By using the SPDE procedure, a high throughput and parallel sample processing could be achieved. Method variables were optimized on whole cow's milk (3.5% fat) fortified at levels close to concentrations found in human milk. Recoveries of target analytes were acceptable and ranged from 69 to 102% and 86 to 120% for whole and skimmed milk, respectively. By the use of two stage clean-up and narrow bore capillary columns, detection limits as low as 20 pg mL−1 could be obtained. The method was used for the determination of organochlorine pollutants in human milk from 19 individuals from Romania. The concentrations of PCBs were low, whereas those of organochlorine pesticides were higher than the values reported from other European countries.  相似文献   

20.
Cui H  Hua L  Hou K  Wu J  Chen P  Xie Y  Wang W  Li J  Li H 《The Analyst》2012,137(2):513-518
A home-made stir bar sorptive extraction (SBSE) apparatus was combined to a single photon ionization time-of-flight mass spectrometer (SPI-TOFMS) for rapid and sensitive determination of trace volatile organic compounds (VOCs) in water. The home-made SBSE bar, low-cost and disposable, was used for VOCs extraction. A thermal desorption (TD) device was designed to desorb the analytes from the SBSE bar, and a high throughput interface was developed to transfer the analytes into the ionization chamber of the SPI-TOFMS. The combination of large extraction volume of SBSE bar, and the direct measurement power of SPI-TOFMS enable a short analysis time for VOCs in water with high sensitivity, for example the limits of detection (LODs) were in the range of 7.4-11.1 ng L(-1) for benzene, toluene, and p-xylene (BTX) within 15 min. BTX aqueous solutions were chosen to demonstrate the quantitative capability, the linear range was from 0.05 to 100 μg L(-1) and the correlation coefficients were better than 0.996. The proposed method was successfully applied for the analysis of VOCs in urban river water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号