首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The increasingly restrictive regulations on car exhaust emissions will necessitate the development of a new generation of three way catalysts (TWC) with better performance1. Ceria (CeO2) is the main component of the current TWC: its key role is to compensate the fluctuations in the exhaust stream composition, therefore, allowing to expand the air/fuel(A/F) operating window of catalytic converters2. This property is related to its oxygen storage capacity (OSC), associated to the redox couple Ce4+/Ce3+. However, CeO2 alone is easy to sinter to lost OSC at high temperature3.Ceria-zirconia (CexZr1-xO2) solid solutions by incorporation of Zr4+ in the CeO2 lattice have enhanced OSC and greater thermal stability, which are becoming the key materials for the new generation of TWC4. OSC of ceria-zirconia solid solutions can be further improved by the addition of M3+ dopants5. Besides Ce, other rare-earth elements such as Pr and Tb can vary their oxidation state. Pr and Tb are particularly suitable for making solid solutions with cerium because the known structure of PrO2 and TbO2 is of the cubic fluorite type, and the ionic radii of Pr4+ and Tb4+ are close to that of Ce4+6.In this paper, Ce0.6Zr0.3M0.1O2 (M=Y, La, Pr, Tb) were prepared by co-precipitation technique and characterized by a series of methods. Meanwhile, palladium-only TWCs were prepared by slurry coating and their catalytic activity was evaluated under the condition of simulated exhaust in the lab.XRD and FT-Raman spectra results show Ce0.6Zr0.3M0.1O2 have cubic fluorite structure which keep unchanging at high temperature. The different dopant ion radii brought different effect on the cell parameter of Ce0.6Zr0.3M0.1O2. The X-ray photoelectron spectroscopy (XPS) results show that the binding energy of Ce3d, Zr3d and O1s for Ce0.6Zr0.3M0.1O2 rose compared with that for Ce0.6Zr0.4O2, indicating dopant elements changed chemistry environment of solid solutions which was available to improve redox performance From TPR results, doping La can not change redox performance of solid solution, but doping Y decreased reduction temperature. Doping Pr and Tb notably improved redox performance of solid solutions due to appearance of low-temperature reduction peak in TPR profile which come from mobility of bulk oxygen.Compared with Pd/Ce0.6Zr0.4O2, doping Y and La unchanged A/F characteristic of TWCs, but doping Pr and Tb widen A/ F operating window and make HC, CO and NO have higher conversion.The light-off temperature of Pd/Ce0.6Zr0.3La0.1O2 was corresponded to that of Pd/Ce0.6Zr0.4O2.However, the light-off temperatures of Pd/Ce0.6Zr0.3M0.1O2 (M=Y, Pr, Tb) were lower than that of Pd/Ce0.6Zr0.4O2, which kept much lower after high temperature treatments. Among Pd/Ce0.6Zr0.3M0.1O2 (M=Y, La, Pr, Tb), Pd/Ce0.6Zr0.3Tb0.1O2 showed wider A/F operating window,higher conversion, lower light-off temperature and better high-temperature resistance  相似文献   

2.
采用共沉淀技术制备了Ce0.35Zr0.55La0.10O1.95固溶体, 其织构和结构性能以及氧化还原性能分别采用BET、XRD和程序升温(TP)技术进行了表征. 制备了低贵金属Pt-Rh型三效催化剂, 考察了Ce0.35Zr0.55La0.10O1.95对催化剂性能的影响. XRD和BET的结果表明, 经600 ℃焙烧5 h后, Ce0.35Zr0.55La0.10O1.95具有与Ce0.50Zr0.50O2相似的立方结构和高的比表面积;经1000 ℃焙烧5 h后, 仍能保持稳定的立方结构和47.25 m2•g−1的比表面积, 表现出优越的织构性能和高的热稳定性. H2-TPR和O2-TPO的结果表明, Ce0.35Zr0.55La0.10O1.95具有比Ce0.50Zr0.50O2更好的氧化还原性能. 和含Ce0.50Zr0.50O2的催化剂相比, 含Ce0.35Zr0.55La0.10O1.95的催化剂具有较宽的工作窗口, 优越的低温起燃性能, 较强的水气变换能力;催化剂经1000 ℃高温水热老化5 h后, 仍具有良好的催化活性, 表现出了优异的抗老化性能.  相似文献   

3.
采用浸渍法制备了不同载体(Ce0.6Zr0.4O2,CeO2和ZrO2)负载的Pt基水煤气变换反应(WGSR)催化剂, 并对其进行了活性评价. 利用X射线衍射(XRD), 程序升温还原(TPR)和原位电导等技术对样品进行了表征. 结果表明, Ce0.6Zr0.4O2固溶体具有比CeO2更高的氧转移能力, 因此促进了Pt/Ce0.6Zr0.4O2催化剂的WGSR活性.  相似文献   

4.
Structural characteristics of CeO(2)-ZrO(2)/TiO(2) (CZ/T) and V(2)O(5)/CeO(2)-ZrO(2)/TiO(2) (V/CZ/T) mixed oxide catalysts have been investigated using X-ray diffraction (XRD), BET surface area, Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HREM) techniques. The CeO(2)-ZrO(2) (1:1 mole ratio) solid solution was deposited over a finely powdered TiO(2) support by a deposition precipitation method. A nominal 5 wt % V(2)O(5) was impregnated over the calcined (773 K) CZ/T mixed oxide carrier by a wet impregnation technique. The obtained CZ/T and V/CZ/T samples were further subjected to thermal treatments from 773 to 1073 K to understand the dispersion and temperature stability of these materials. In the case of CZ/T samples, the XRD results suggest the formation of different cubic and tetragonal Ce-Zr-oxide phases, Ce(0.75)Zr(0.25)O(2), Ce(0.6)Zr(0.4)O(2), Ce(0.5)Zr(0.5)O(2), and Ce(0.16)Zr(0.84)O(2) in varying proportions depending on the treatment temperature. With increasing calcination temperature from 773 to 1073 K, the intensity of the lines pertaining to cubic Ce(0.6)Zr(0.4)O(2) and Ce(0.5)Zr(0.5)O(2) phases increased at the expense of cubic Ce(0.75)Zr(0.25)O(2), indicating more incorporation of zirconia into the ceria lattice. The TiO(2) was mainly in the anatase form whose crystallite size also increased with increasing treatment temperature. A better crystallization and more incorporation of zirconia into the ceria lattice was noted when CZ/T was impregnated with V(2)O(5). However, no crystalline V(2)O(5) could be seen from both XRD and RS measurements. In particular, a preferential formation of CeVO(4) compound and an intense tetragonal Ce(0.16)Zr(0.84)O(2) phase were noted beyond 873 K. The HREM results indicate, in the case of CZ/T samples, a well-dispersed Ce-Zr-oxide of the size approximately 5 nm over the bigger crystals ( approximately 40 nm) of TiO(2) when treated at 873 K. The exact structural features of these crystals as determined by digital diffraction analysis of experimental images reveal that the Ce-Zr-oxides are mainly in the cubic fluorite geometry and the TiO(2) is in anatase form. A better crystallization of Ce-Zr-oxides ( approximately 8 nm) over the surface of bigger crystals of TiO(2) was noted at 1073 K. A further enhancement in the crystallite size and zirconia-rich tetragonal phase was noted in the case of V/CZ/T samples. Further, the structure of CeVO(4) formed was also clearly identified in conformity with XRD and RS results.  相似文献   

5.
Ce(x)Zr(1)(-)(x)O(2) solid solutions deposited over silica surface were investigated by X-ray diffraction (XRD), Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HREM) techniques in order to understand the role of silica support and the temperature stability of these composite oxides. For the purpose of comparison, an unsupported Ce(x)Zr(1)(-)(x)O(2) was also synthesized and subjected to characterization by various techniques. The Ce(x)Zr(1)(-)(x)O(2)/SiO(2) (CZ/S) (1:1:2 mole ratio based on oxides) was synthesized by depositing Ce(x)Zr(1)(-)(x)O(2) solid solution over a colloidal SiO(2) support by a deposition precipitation method and unsupported Ce(x)Zr(1)(-)(x)O(2) (CZ) (1:1 mole ratio based on oxides) was prepared by a coprecipitation procedure, and the obtained catalysts were subjected to thermal treatments from 773 to 1073 K. The XRD measurements disclose the presence of cubic phases with the composition Ce(0.75)Zr(0.25)O(2) and Ce(0.6)Zr(0.4)O(2) in CZ samples, while CZ/S samples possess Ce(0.75)Zr(0.25)O(2), Ce(0.6)Zr(0.4)O(2), and Ce(0.5)Zr(0.5)O(2) in different proportions. The crystallinity of these phases increased with increasing calcination temperature. The cell a parameter estimations indicate contraction of ceria lattice due to the incorporation of zirconium cations into the CeO(2) unit cell. Raman measurements indicate the presence of oxygen vacancies, lattice defects, and displacement of oxygen ions from their normal lattice positions in both the series of samples. The HREM results reveal, in the case of CZ/S samples, a well-dispersed nanosized Ce-Zr-oxides over the surface of amorphous SiO(2). The structural features of these crystals as determined by digital diffraction analysis of experimental images reveal that the Ce-Zr-oxides are mainly in the cubic geometry and exhibit high thermal stability. Oxygen storage capacity measurements by a thermogravimetric method reveal a substantial enhancement in the oxygen vacancy concentration of CZ/S sample over the unsupported CZ sample.  相似文献   

6.
γ-Al2O3是机动车尾气净化催化剂的常用载体,其高温热稳定性、比表面积、孔容、孔径及表面酸性等对催化活性有很大影响.近年来,大量研究结果表明,铈、锆、镧和钡等元素的添加可以提高氧化铝的高温热稳定性和催化活性[1~3],然而这些研究大多致力于单组分或者双组分改性氧化铝,制备方法以浸渍法和溶胶-凝胶法为主.胶溶法制备三组分共同改性氧化铝的研究很少.本文利用胶溶法制备了系列铈、锆、镧改性氧化铝,讨论了三组分共同添加对氧化铝载体的性质以及催化剂活性的影响.  相似文献   

7.
以水热法合成的介孔铈锆固溶体为载体,采用浸渍法制备了Ni/CexZr1-xO2催化剂,使用X射线衍射(XRD)、程序升温还原(TPR)和热重-差示扫描量热分析(TG-DSC)等测试手段对催化剂进行了表征。通过对比以ZrO2,CeO2,Ce0.6Zr0.4O2和Ce0.33Zr0.67O2为载体的Ni基催化剂性能,发现铈锆固溶体独特的氧化还原性质可以提高活性组分的分散度,增强催化剂的抗积炭性能,从而提高催化剂对甲烷二氧化碳重整制合成气的选择性。  相似文献   

8.
Structural characteristics of nanosized ceria-silica, ceria-titania, and ceria-zirconia mixed oxide catalysts have been investigated using X-ray diffraction (XRD), Raman spectroscopy, BET surface area, thermogravimetry, and high-resolution transmission electron microscopy (HREM). The effect of support oxides on the crystal modification of ceria cubic lattice was mainly focused. The investigated oxides were obtained by soft chemical routes with ultrahighly dilute solutions and were subjected to thermal treatments from 773 to 1073 K. The XRD results suggest that the CeO(2)-SiO(2) sample primarily consists of nanocrystalline CeO(2) on the amorphous SiO(2) surface. Both crystalline CeO(2) and TiO(2) anatase phases were noted in the case of CeO(2)-TiO(2) sample. Formation of cubic Ce(0.75)Zr(0.25)O(2) and Ce(0.6)Zr(0.4)O(2) (at 1073 K) were observed in the case of the CeO(2)-ZrO(2) sample. Raman measurements disclose the fluorite structure of ceria and the presence of oxygen vacancies/Ce(3+). The HREM results reveal well-dispersed CeO(2) nanocrystals over the amorphous SiO(2) matrix in the cases of CeO(2)-SiO(2), isolated CeO(2), and TiO(2) (anatase) nanocrystals, some overlapping regions in the case of CeO(2)-TiO(2), and nanosized CeO(2) and Ce-Zr oxides in the case of CeO(2)-ZrO(2) sample. The exact structural features of these crystals as determined by digital diffraction analysis of HREM experimental images reveal that the CeO(2) is mainly in cubic fluorite geometry. The oxygen storage capacity (OSC) as determined by thermogravimetry reveals that the OSC of the mixed oxide systems is more than that of pure CeO(2) and is system dependent.  相似文献   

9.
Pt/CeO2-ZrO2变换催化剂的制备、表征与性能   总被引:7,自引:0,他引:7  
 用共沉淀法制备了不同Ce/Zr比的CeO2-ZrO2复合氧化物,用浸渍法制备了Pt/CeO2-ZrO2水煤气变换催化剂,并对该催化剂进行了活性评价. 结果表明,与传统的Cu基低变催化剂相比,该催化剂具有操作温度范围宽和抗氧化冲击等优点,具有应用于车载重整制氢过程的潜力. 考察了温度、空速和汽/气比等条件对催化剂活性的影响,对催化剂的制备参数和工艺参数进行了研究. 结果表明,不同Ce/Zr比的Pt/CeO2-ZrO2催化剂的活性相差很大,其中Pt/Ce0.8Zr0.2O2变换催化剂活性最高. XRD结果表明,制备的Pt/Ce0.8Zr0.2O2形成了固溶体. 通过增加单位质量催化剂表面的Pt原子数可提高催化剂的活性.  相似文献   

10.
用共沉淀法制备了CexTi1-xO2复合氧化物载体。XRD和低温N2吸附-脱附结果指出,当0.2≤x≤0.4时,CexTi1-xO2载体主要以无定形态存在,且Ce0.4Ti0.6O2的比表面积和孔容最大。Mn-Fe/CexTi1-xO2系列催化剂低温NH3选择性催化还原(SCR)NO活性结果表明,Mn-Fe/CexTi1-xO2的活性随着Ce含量的增加先增大后减小,其中Mn-Fe/Ce0.4Ti0.6O2的活性最佳,在41000 h-1空速下,催化剂在75℃起燃,NO转化率在113℃时即超过90%。而XRD和XPS分析结果指出,Mn-Fe/Ce0.4Ti0.6O2催化剂主要以无定形或微晶的形式存在,催化剂表面Mn和Fe与载体间存在强相互作用,且催化剂表面存在Ce3+/Ce4+氧化还原电对和较多的化学吸附氧,有利于NO氧化成NO2,同时催化剂表现出了较好的抗H2O和SO2性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号