首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of the radiochemical yield of [18F]fluoromisonidazole (1) on different reaction parameters such as reaction time, temperature and amount of precursor was investigated for the nucleophilic substitution of tosylate by [18F]fluoride and subsequent hydrolysis of the protecting group on 1-(2′-nitro-1′-imidazolyl)-2-O-tetrahydropyranyl-3-O-toluenesulfonylpropanediol as the precursor molecule (2). Highest yields (86%±6%) were obtained using 10 mg (2) at 100°C for 10 minutes, whereas both at 80 and 120°C the yields were lower (46%±11% and 29%±14%, respectively). A rapid decrease of the yield was observed when the reaction time exceeded 15 minutes, i.e., at 100°C using 5 mg (2) the radiochemical yield decreased from 61%±8% at 15 minutes to 18%±10% at 60 minutes.  相似文献   

2.
6-[18F]Fluoro-L-Dopa (6-FDOPA) is the analogue of L-Dopa, the biosynthesis precursor for dopamine. As a PET tracer, it was widely applied for the presynaptic dopamine function studies in human brain. The application of a chiral phase-transfer-catalyst (PTC) in enantioselective synthesis of N.C.A. 6-[18F]Fluoro-L-Dopa has been developed recently. An improved procedure was described in this study. The labeling precursor (6-Trimethylammoniumveratraldehyde Triflate) and PTC (O-Allyl-N-(9)-anthracenylcinchonidinium Bromide) were synthesized. A successful synthesis route was developed for the preparation of 6-[18F]Fluoro-L-Dopa with high radiochemical yields (4-9%, decay uncorrected) and short synthesis time(80min). The radiochemical purity was over 99% and no D-isomer was detected by HPLC analysis using a chiral mobile phase.  相似文献   

3.
[18F]THK-5351, a new candidate for tau protein imaging, is based on an aryl quinoline structure. We report the full automatic synthesis using disposable cassettes under pH controlled [18F]fluorination. After the trapping of 88.5 ± 21.9 GBq of [18F]fluoride, it was eluted with potassium methansulfonate (KOMs) (pH 7.8)/K222. After drying, 3 mg of the precursor was added to 1 mL DMSO and subjected to [18F]fluorination at 110 °C for 10 min. After hydrolysis, the final product was purified by HPLC. The overall radiochemical yield was 31.9 ± 11.1% (n = 22), satisfying all quality control criteria. It was stable for up to 6 h with high radiochemical purity as 99.8 ± 0.5%.  相似文献   

4.
Radiochemical 18F-fluorination yields of several compounds using the secondary labelling precursors 2-[18F]fluoroethyl tosylate ([18F]FETos) and 1-bromo-2-[18F]fluoroethane ([18F]BFE) could be considerably enhanced by the addition of an alkali iodide. The radiochemical yield of [18F]fluoroethyl choline for example could be doubled with [18F]BFE and increased from 13% to ≈80% with [18F]FETos. By addition of alkali iodide to the precursor, the 18F-fluoroethylation yields of established radiopharmaceuticals, especially in the case of automated syntheses, could be significantly increased without major changes of the reaction conditions.  相似文献   

5.
A automated synthesis of symmetric integrin αvβ3-targeted radiotracer [18F]FP-PEG3-β-Glu-RGD2 was carried out by multi-step procedure on the modified PET-MF-2V-IT-I synthesizer. Firstly, the prosthetic group of 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP) was automated synthesized by a convenient three-step, one-pot procedure. Secondly, [18F]FP-PEG3-β-Glu-RGD2 was synthesized by coupling [18F]NFP with the symmetric RGD-peptide (PEG3-β-Glu-RGD2) and purified by a solid-phase extraction cartridge. The radiochemical yields of [18F]NFP were 35 ± 5 % (n = 10, decay-corrected) based on [18F]fluoride in 80 min. [18F]FP-PEG3-β-Glu-RGD2 was obtained with yield 40 ± 10 % (n = 5, decay-corrected) from [18F]NFP within 20 min. The radiochemical purity of [18F]FP-PEG3-β-Glu-RGD2 was greater than 98 %.  相似文献   

6.
2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]fluoroethyl)nortropane ([18F]-FECNT) is a potential dopamine transporter PET imaging agent. However, its current radio-synthesis is tedious and time consuming. In this article, we reported a fully automatic method for the synthesis of [18F] FECNT through only one step, using a TRACERlab FXN module, with decay corrected radiochemical yield of 25 ± 5 % (n = 5). The total synthesis time was 50–55 min. The synthesized [18F]FECNT was evaluated in vivo in Parkinson’s disease model rats.  相似文献   

7.
The need of reliable production of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB), a versatile 18F-labeled prosthetic group for protein labeling, has increased dramatically due to the easy availability of proteins or their engineered derivatives for targeted molecular imaging. A module-assisted radiosynthesis of [18F]SFB was developed using a three-step, one-pot procedure and ethyl 4-(trimethylammonium)benzoate triflate (1) as the starting material. The radiochemical transformations were carried out in a general-purpose, custom-made module and streamlined by an anhydrous deprotection strategy using t-BuOK/DMSO. After HPLC-purification, [18F]SFB was synthesized in radiochemical yields of 20–30% (n > 10, not decay-corrected) and excellent radiochemical and chemical purities (>98%). The total synthesis and purification time required is ~90 min. Using the purified [18F]SFB, three 18F-labeled proteins, bovine serum albumin (BSA), chicken egg albumin (CEA) and transferrin, were synthesized in yields of 61.0–79.5%. The 18F-Annexin V for apoptosis imaging was also produced in 5% radiolabeling yield and >95% radiochemical purity.  相似文献   

8.
In cancer cells hypoxia can cause resistance to both radio- and chemo-therapy. Being able to quantify, the degree of hypoxia in the cells is a useful tool in therapy planning. The positron emitting 1-[18F]fluoro-3-(2-nitro-1H-imidazol-1-yl)propan-2-ol ([18F]FMISO) is the most extensively used tracer for imaging hypoxia. Automated synthesis of [18F]FMISO was set up on IBA Synthera®. The precursor 1-(2′-nitro-1′-imidazolyl)-2-O-tetrahydropyranyl-3-O-p-toluenesulfonyl propanediol (NITTP) was heated at 100 °C for 10 min with [K/K 2.2.2.]+[18F]? and thereafter hydrolyzed with 0.1 M hydrochloric acid at 90 °C for 2 min. Purification was performed on solid-phase extraction (SPE) cartridges. [18F]FMISO was obtained in 50 ± 3 % (n = 6) radiochemical yield (decay-corrected) in 35 min synthesis time with radiochemical purity of ≥98 %. The use of disposable Integrated Fluid Processors (IFP?:s) and cartridge purification simplifies the handling and shortens the synthesis time. This is a no frills setup based on all commercially available materials and the synthesis is performed with minor changes from the FDG time-list.  相似文献   

9.
The aim of this study was to synthesize the optically pure [18F]FPA, and to investigate the diagnostic value of different isomers. Semi-automated radiosynthesis of R-[18F]FPA or S-[18F]FPA was respectively from the chiral precursor (S)- or (R)-ethyl 2-(((trifluoromethyl)sulfonyl)oxy)propanoate via a two-step reaction and performed on the commercial FDG synthesizer. The improved radiochemical yields of R-[18F]FPA and S-[18F]FPA were 3040% (decay-uncorrected, n = 10) in 35 min. There was no significant difference on the biodistribution of two enantiomers in normal mice (P > 0.05), but positron emission tomography imaging demonstrated that R-[18F]FPA was more suitable for PC3 tumor imaging than S-[18F]FPA and [18F]FDG.  相似文献   

10.
As model reactions for the introduction of [18F]fluorine into aromatic amino acids, the replacement of NO2 by [18F]fluoride ion in mono- to tetra-methoxy-substituted ortho-nitrobenzaldehydes was systematically investigated. Unexpectedly, the highly methoxylated precursors 2,3,4-trimethoxy-6-nitrobenzaldehyde and 2,3,4,5-tetramethoxy-6-nitrobenzaldehyde showed high maximum radiochemical yields (82% and 48% respectively). When the electrophilicity of the leaving group substituted carbon atom is expressed by its 13C NMR chemical shift a good correlation with the reaction rate at the beginning of the reaction (first min) was found (R2 = 0.89), whereas the maximum radiochemical yields correlated much poorer with this electrophilicity parameter. This may be caused by side reactions becoming influencial in the further reaction course. As possible side reactions the demethylation of methoxy groups and intramolecular redox reactions could be detected by HPLC/MS.  相似文献   

11.
Due to the biological complexity of the N‐methyl‐d ‐aspartate receptor (NMDAR ), the development of a positron emission tomography radiotracer for the imaging of NMDAR has met with limited success. Recent studies have established the presence of GluN2A subunit of the NMDAR in the heart and its role in the regulation of intracellular calcium levels. In our efforts to develop an imaging agent for the GluN2A subunit, we designed three new compounds based on a quinoxaline scaffold. The synthesis of the analogues was based on a two‐step Kabachnik–Fields reaction in sequence with Suzuki cross‐coupling and acid hydrolysis. They exhibited comparable high binding affinity values below 5 nm . A two‐step radiolabeling procedure was successfully developed for the synthesis of [18F] 1 . [18F] 1 was obtained in a modest overall radiochemical yield of 5.5 ± 4.2%, a good specific radioactivity of 254 ± 158 GBq/μmol, and a radiochemical purity > 99%. While compounds 2 and 3 showed comparable binding affinity towards NMDAR , sluggish radiolabeling, prevented their further evaluation. For [18F] 1 , in vitro autoradiography on rat heart slices demonstrated heterogeneous but unspecific accumulation, whereas for the brain a high in vitro specificity towards NMDAR , could be demonstrated.  相似文献   

12.
The preparation of 10-(2-[18F]fluoroethoxy)-20(S)-camptothecin, a potential positron emission tomography tracer for the imaging of topoisomerase I in cancers, is described. 10-(2-[18F]Fluoroethoxy)-20(S)-camptothecin was synthesized by the [18F]fluoroalkylation of the corresponding hydroxy precursor molecule with 2-[18F]fluoroethyl bromide ([18F]FEtBr) in dimethylsulfoxide (DMSO) at 55 °C for 20 min; this was followed by purification using high performance liquid chromatography (HPLC) with a total preparation time of 60 min. The overall radiochemical yield was approximately 5.4–12 % (uncorrected), and the radiochemical purity was above 96 %.  相似文献   

13.
Due to favourable in vivo characteristics, its high specificity and the longer half-life of 18F (109.8 min) allowing for remote-site delivery, O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET) has gained increased importance for molecular imaging of cerebral tumors. Consequently, the development of simple and efficient production strategies for [18F]FET could be an important step to further improve the cost-effective availability of [18F]FET in the clinical environment. In the present study [18F]FET was synthesized via direct nucleophilic synthesis using an earlier developed chiral precursor, the NiII complex of an alkylated (S)-tyrosine Schiff base, Ni-(S)-BPB-(S)-Tyr-OCH2CH2OTs. The purification method has been developed via solid phase extraction thereby omitting cumbersome HPLC purification. The suggested SPE purification using combination of reverse phase and strong cation exchange cartridges provided [18F]FET in high chemical, radiochemical and enantiomeric purity and 35 % radiochemical yield (decay-corrected, 45 min synthesis time). The method was successfully automated using a commercially available synthesis module, Scintomics Hotboxone. Based on the current results, the proposed production route appears to be well suited for transfer into an automated cassette-type radiosynthesizers without using HPLC.  相似文献   

14.
A new automated synthesis procedure of 1-H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([18F]FMISO), a specific hypoxia imaging agent with great significances for the noninvasive, dynamic hypoxia evaluation of cancer, was developed by modifying Explora FDG4 module, a commercial [18F]FDG production system, in this study. Its radiochemical synthesis was carried out via two sequent reaction steps, i.e. the nucleophilic displacement of labeling precursor 1-(2′-nitro-1′-imidazolyl)-2-O-tetrahydropyranyl-3-O-tosyl-propanediol (NITTP) with activated 18F- ion at 100 °C for 8 minutes, and the following hydrolysis with 1M HCl at 100 °C for 5 minutes and neutralization with 1M NaOH. Two-pot reaction with two independent separations was adopted to assure the good separation of final product via solid phase extraction (SPE) based upon combined Sep-pak cartridges instead of high performance liquid chromatography (HPLC). This fast, reliable preparation route of 18F-FMISO could complete within 50 minutes with about 55% of high radiochemical yield (with decay correction) and more than 98% of good radiochemical purity. The modified module could perform multiple runs of production of [18F]FMISO.  相似文献   

15.
Nucleophilic incorporation of [18F]F? under aqueous conditions holds several advantages in radiopharmaceutical development, especially with the advent of complex biological pharmacophores. Sulfonyl fluorides can be prepared in water at room temperature, yet they have not been assayed as a potential means to 18F‐labelled biomarkers for PET chemistry. We developed a general route to prepare bifunctional 4‐formyl‐, 3‐formyl‐, 4‐maleimido‐ and 4‐oxylalkynl‐arylsulfonyl [18F]fluorides from their sulfonyl chloride analogues in 1:1 mixtures of acetonitrile, THF, or tBuOH and Cs[18F]F/Cs2CO3(aq.) in a reaction time of 15 min at room temperature. With the exception of 4‐N‐maleimide‐benzenesulfonyl fluoride ( 3 ), pyridine could be used to simplify radiotracer purification by selectively degrading the precursor without significantly affecting observed yields. The addition of pyridine at the start of [18F]fluorination (1:1:0.8 tBuOH/Cs2CO3(aq.)/pyridine) did not negatively affect yields of 3‐formyl‐2,4,6‐trimethylbenzenesulfonyl [18F]fluoride ( 2 ) and dramatically improved the yields of 4‐(prop‐2‐ynyloxy)benzenesulfonyl [18F]fluoride ( 4 ). The N‐arylsulfonyl‐4‐dimethylaminopyridinium derivative of 4 ( 14 ) can be prepared and incorporates 18F efficiently in solutions of 100 % aqueous Cs2CO3 (10 mg mL?1). As proof‐of‐principle, [18F] 2 was synthesised in a preparative fashion [88(±8) % decay corrected (n=6) from start‐of‐synthesis] and used to radioactively label an oxyamino‐modified bombesin(6–14) analogue [35(±6) % decay corrected (n=4) from start‐of‐synthesis]. Total preparation time was 105–109 min from start‐of‐synthesis. Although the 18F‐peptide exhibited evidence of proteolytic defluorination and modification, our study is the first step in developing an aqueous, room temperature 18F labelling strategy.  相似文献   

16.
A general method for the synthesis of [18F]difluoromethylarenes from [18F]fluoride for radiopharmaceutical discovery is reported. The method is practical, operationally simple, tolerates a wide scope of functional groups, and enables the labeling of a variety of arenes and heteroarenes with radiochemical yields (RCYs, not decay‐corrected) from 10 to 60 %. The 18F‐fluorination precursors are readily prepared from aryl chlorides, bromides, iodides, and triflates. Seven 18F‐difluoromethylarene drug analogues and radiopharmaceuticals including Claritin, fluoxetine (Prozac), and [18F]DAA1106 were synthesized to show the potential of the method for applications in PET radiopharmaceutical design.  相似文献   

17.
In this paper, N-(2-[18F]fluoropropionyl)-β-glutamic acid 8 ([18F]FP-β-Glu), a new N-substituted 18F-labeled amino acid tracer, was synthesized from the precursor 4 (diethyl 3-(2-bromopropanamido)pentanedioate) via a two-step reaction on the modified FDG synthesizer. The radiochemical yield was 20 ± 5% (n = 10, decay-corrected) from [18F]fluoride within 40 min, the radiochemical purity was 98%. Moreover, microPET studies showed that [18F]FP-β-Glu 8 exhibited rapid tumor uptake and good tumor-to-lung ratio in SPC-A-1 tumor-bearing mice. A high accumulation of radioactivity was found in the kidneys and bladder, which suggested that the tracer was mainly eliminated through the urinary system.  相似文献   

18.
For detection of hypoxic tumor tissue, all radiotracers synthesized until now, are based on the concept that cellular uptake is being controlled by diffusion. As a new approach, we chose the concept to have the tracer hypothetically transported into the cells by well known carrier systems like the amino acid transporters. For this purpose, radiosynthesis of O-[2-[18F]fluoro-3-(2-nitro-1H-imidazole-1yl)propyl]tyrosine ([18F]FNT]) was carried out from methyl 2-(benzyloxycarbonyl)-3-(4-3-(2-nitro-1H-imidazol-1-yl)-2-(tosyloxy)propoxy) phenyl)propanoate via no-carrier-added nucleophilic aliphatic substitution. After labelling, 81 ± 0.9% of labelled intermediate i.e. methyl 2-(benzyloxycarbonyl)-3-(4-(2-[18F]fluoro-3-(2-nitro-1H-imidazole-1-yl)propoxy) phenyl)propanoate was obtained at 140 °C. At the end of radiosynthesis, [18F]FNT was obtained in an overall radiochemical yield of 40 ± 0.9% (not decay corrected) within 90 min in a radiochemical purity of >98% in a formulation ready for application in the clinical studies for PET imaging of hypoxia.  相似文献   

19.
4,5-Bis(butoxy)-2-nitrobenzaldehyde and 4,5-bis(tert-butoxycarbonyloxy)-2-nitrobenzaldehyde, as well as their fluorine-18 labeled derivatives (the half-life of F18 is T1/2 = 110 min) were synthesized for use as precursors in the synthesis of fluorine-18 labeled catecholamines and 6-[18F]fluoro-l-DOPA ((S)-3-[4,5-dihydroxy-2-[18F]fluorophenyl]-2-aminopropionic acid), important radiopharmaceutical agents (RPAs) for positron emission tomography. An advantageous feature of the newly obtained substituted nitrobenzaldehydes is the presence of labile protective groups which can be removed without using aggressive chemicals and severe conditions, which is of fundamental importance for automation of the RPA synthesis in modern synthesis apparatus. A high and stable radiofluorination yield achieved under the optimum fluorination conditions (Kryptofix 222 [K/K2.2.2.]+[18F], DMF, 140 °C, 10 min) using 4,5-bis(butoxy)-2-nitrobenzaldehyde as a substrate (83±6%, the number of experiments was n = 15) makes this compound a precursor of choice for the radioactive synthesis.  相似文献   

20.
3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) is a positron emission tomography (PET) tracer useful for tumor proliferation assessment for a number of cancers, particularly in the cases of brain, lung, and breast tumors. At present [18F], FLT is commonly prepared by means of the nucleophilic radiofluorination of 3-N-Boc-5′-O-DMT-3′-O-nosyl thymidine precursor in the presence of a phase-transfer catalyst, followed by an acidic hydrolysis. To achieve high radiochemical yield, relatively large amounts of precursor (20–40 mg) are commonly used, leading to difficulties during purification steps, especially if a solid-phase extraction (SPE) approach is attempted. The present study describes an efficient method for [18F]FLT synthesis, employing tetrabutyl ammonium tosylate as a non-basic phase-transfer catalyst, with a greatly reduced amount of precursor employed. With a reduction of the precursor amount contributing to lower amounts of synthesis by-products in the reaction mixture, an SPE purification procedure using only two commercially available cartridges—OASIS HLB 6cc and Sep-Pak Alumina N Plus Light—has been developed for use on the GE TRACERlab FX N Pro synthesis module. [18F]FLT was obtained in radiochemical yield of 16 ± 2% (decay-corrected) and radiochemical purity >99% with synthesis time not exceeding 55 min. The product was formulated in 16 mL of normal saline with 5% ethanol (v/v). The amounts of chemical impurities and residual solvents were within the limits established by European Pharmacopoeia. The procedure described compares favorably with previously reported methods due to simplified automation, cheaper and more accessible consumables, and a significant reduction in the consumption of an expensive precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号