首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
d-Fructose dehydrogenase (FDH), a heterotrimeric membrane-bound enzyme, exhibits strong activity in direct electron transfer- (DET-) type bioelectrocatalysis. We constructed a variant (Δ1cFDH) that lacks 143 amino acid residues involving one heme c moiety (called heme 1c) on the N-terminus of subunit II, and characterized the bioelectrocatalytic properties of Δ1cFDH using cyclic voltammetry. A clear DET-type catalytic oxidation wave of d-fructose was observed at the Δ1cFDH-adsorbed Au electrodes. The result clearly indicates that the electrons accepted at the flavin adenine dinucleotide catalytic center in subunit I are transferred to electrodes via two of the three heme c moieties in subunit II without going through heme 1c. In addition, the limiting current density of Δ1cFDH was one and a half times larger than that of the native FDH in DET-type bioelectrocatalysis. The downsizing protein engineering causes an increase in the surface concentration of the electrochemically effective enzymes and an improvement in the heterogeneous electron transfer kinetics.  相似文献   

2.
The direct electron transfer reaction of fructose dehydrogenase (FDH) from Gluconobacter sp. on alkanethiol-modified gold nanoparticles (AuNPs) was examined. AuNP-modified electrodes were simply fabricated by depositing citrate-reduced gold nanoparticles onto a gold electrode and carbon fiber paper and then covering the surface with a self-assembled monolayer of alkanethiols. The immobilization of AuNPs provided a large effective surface area for the adsorption of FDH. Catalytic oxidation currents based on the direct electron transfer reaction of FDH were observed from a potential about ?100 mV (vs. Ag/AgCl, 3 M NaCl) in the presence of d-fructose without a mediator. The current density reached as high as 14.3 ± 0.93 mA/cm2 (at +500 mV), which was achieved in the presence of 200 mM d-fructose by immobilization of FDH on 2-mercaptoethanol-modified AuNP/carbon fiber paper electrodes.  相似文献   

3.
Bioelectrochemical dioxygen reduction reaction (ORR) catalyzed by multi-copper oxidases (MCOs) is a process of paramount importance occurring at the cathode of enzymatic biofuel cells (EBFCs), which is an energy harvester that holds promise of self-sustained implantable and wearable medical devices. The MCO biocathode is, however, frequently the limiting factor of a working EBFC. Besides the operational stability issue, enzymatic biocathodes are largely constrained by the relatively low solubility of dioxygen in aqueous solution. As an emerging topic, we here review the introduction of dioxygen-enriching materials to the cathodic bioelectrode for overcoming the dioxygen supply limitation, leading to improved ORR performance.  相似文献   

4.
Nanostructured carbons have been widely used for fabricating enzyme-modified electrodes due to their large specific surface area. However, because they are random aggregates of particular or tubular nanocarbons, the postmodification of enzymes to their intrananospace is generally hard to control. Here, we describe a free-standing film of carbon nanotube forest (CNTF) that can form a hybrid ensemble with enzymes through liquid-induced shrinkage. This provides in situ regulation of its intrananospace (inter-CNT pitch) to the size of enzymes and eventually serves as a highly active electrode. The CNTF ensemble with fructose dehydrogenase (FDH) showed the oxidation current density of 16 mA cm(-2) in stirred 200 mM fructose solution. The power density of a biofuel cell using the FDH-CNTF anode and the Laccase-CNTF cathode reached 1.8 mW cm(-2) (at 0.45 V) in the stirred oxygenic fructose solution, more than 80% of which could be maintained after continuous operation for 24 h. Application of the free-standing, flexible character of the enzyme-CNTF ensemble electrodes is demonstrated via their use in the patch or wound form.  相似文献   

5.
The direct bioelectrocatalysis by an NAD(P)‐reducing hydrogenase is reported for the first time. In contrast to previous attempts to involve similar enzymes in bioelectrocatalysis [1–4], which were in fact unsuccessful, in our report an effective electrocatalysis by Pyrococcus furiosus hydrogenase is convincingly shown by (i) achievement of the hydrogen equilibrium potential and (ii) a high current of hydrogen oxidation (0.3 mA cm?2 at 100 mV overpotential and at 75 °C). The latter is just a few times lower compared to enzyme electrodes based on NAD(P)‐independent hydrogenases.  相似文献   

6.
Direct electrochemistry of heme multicofactor-containing enzymes, e.g., microbial theophylline oxidase (ThOx) and D-fructose dehydrogenase (FDH) from Gluconobacter industrius was studied on alkanethiol-modified gold electrodes and was compared with that of some previously studied complex heme enzymes, specifically, cellobiose dehydrogenase (CDH) and sulphite oxidase (SOx). The formal redox potentials for enzymes in direct electronic communication varied for ThOx from -112 to -101 mV (vs. Ag|AgCl), at pH 7.0, and for FDH from -158 to -89 mV, at pH 5.0 and pH 4.0, respectively, on differently charged alkanethiol layers. Direct and mediated by cytochrome c electrochemistry of FDH correlated with the existence of two active centres in the protein structure, i.e., the heme and the pyrroloquinoline quinone (PQQ) prosthetic groups. The effect of the alkanethiols of different polarity and charge on the surface properties of the gold electrodes necessary for adsorption and orientation of ThOx, FDH, CDH and SOx, favourable for the efficient electrode-enzyme electron transfer reaction, is discussed.  相似文献   

7.
The current density of biofuel cells which use dissolved O2 as electron acceptor is limited by O2 supply to the electrode surface due to the low solubility and small diffusion coefficient of O2 in the electrolyte solution. In order to increase the current density, we constructed an air diffusion biocathode which uses O2 directly from the air. As cathodic biocatalyst, we utilized CueO from Escherichia coli, which belongs to the family of multi-copper oxidases. O2 reduction was catalyzed by CueO adsorbed on Ketjen black-modified carbon paper electrodes. The hydrophobic electrode surface was obtained by optimizing the weight ratio of polytetrafluoroethylene binder to Ketjen black. The current density of O2 reduction reached values as high as 20 mA cm− 2 at 0 V vs. Ag|AgCl, KCl(sat.) in a citrate buffer (1.0 M, pH 5.0, 25 °C).  相似文献   

8.
An oxygen cathode operating in a physiological solution   总被引:4,自引:0,他引:4  
We report the electroreduction of O(2) to water under physiological conditions (pH 7.4, 0.15 M NaCl, 37.5 degrees C) at a current density of 5 mA cm(-2) and at a potential only 0.18 V reducing versus that of the reversible O(2)/H(2)O electrode at pH 7.4. The immobilized electrocatalyst enabling the reduction is the electrostatic adduct of bilirubin oxidase from Myrothecium verrucaria, a polyanion at pH >4.1, and the polycationic redox copolymer of polyacrylamide and poly (N-vinylimidazole) complexed with [Os (4,4'-dichloro-2,2'-bipyridine)(2)Cl](+/2+), cross-linked on carbon cloth. The current density of the rotating electrodes was O(2) transport limited up to 8.8 mA cm(-2); their kinetic limit was reached at 9.1 mA cm(-2). The operational life of the electrodes depended on their angular velocity, which defined not only the current density but also the mechanical shear stress stripping the electrocatalyst. When the electrodes were rotated at 300 rpm and were poised at -256 mV versus the potential of the reversible O(2)/H(2)O electrode, their 2.4 mA cm(-2) initial current density decreased to 1.3 mA cm(-2) after 6 days of continuous operation at 37.5 degrees C.  相似文献   

9.
The selective two-electron reduction of dioxygen occurs in the case of a monocobalt porphyrin [Co(OEP)], whereas the selective four-electron reduction of dioxygen occurs in the case of a cofacial dicobalt porphyrin [Co(2)(DPX)]. The other cofacial dicobalt porphyrins [Co(2)(DPA), Co(2)(DPB), and Co(2)(DPD)] also catalyze the two-electron reduction of dioxygen, but the four-electron reduction is not as efficient as in the case of Co(2)(DPX). The micro-superoxo species of cofacial dicobalt porphyrins were produced by the reactions of cofacial dicobalt(II) porphyrins with dioxygen in the presence of a bulky base and the subsequent one-electron oxidation of the resulting micro-peroxo species by iodine. The superhyperfine structure due to two equivalent cobalt nuclei was observed at room temperature in the ESR spectra of the micro-superoxo species. The superhyperfine coupling constant of the micro-superoxo species of Co(2)(DPX) is the largest among those of cofacial dicobalt porphyrins. This indicates that the efficient catalysis by Co(2)(DPX) for the four-electron reduction of dioxygen by Fe(C(5)H(4)Me)(2) results from the strong binding of the reduced oxygen with Co(2)(DPX) which has a subtle distance between two cobalt nuclei for the oxygen binding. Mechanisms of the catalytic two-electron and four-electron reduction of dioxygen by ferrocene derivatives will be discussed on the basis of detailed kinetics studies on the overall catalytic reactions as well as on each redox reaction in the catalytic cycle. The turnover-determining step in the Co(OEP)-catalyzed two-electron reduction of dioxygen is an electron transfer from ferrocene derivatives to Co(OEP)(+), whereas the turnover-determining step in the Co(2)(DPX)-catalyzed four-electron reduction of dioxygen changes from the electron transfer to the O-O bond cleavage of the peroxo species of Co(2)(DPX), depending on the electron donor ability of ferrocene derivatives.  相似文献   

10.
The oxygen evolution reaction(OER) is a key step in the overall water splitting process. Numerous electrocatalysts have been developed to lower the overpotential and accelerate the kinetics of the OER. In this work, a simple soaking and heating treatment was used to form a stable and efficient Fe_xNi_(1-x)O_y/CP electrode. The electrode combined nickel and iron oxides on a commercial carbon paper were used for electrocatalytic water oxidation. The best Fe_xNi_(1-x)O_y/CP electrode(Ni/Fe = 15/1) displayed a current density of 10 mA/cm~2 at a low overpotential of 290 mV in 0.1 M KOH solution with a Tafel slope of 52 mV/dec.A higher current density of ~50 mA/cm~2 at the same overpotential and a lower Tafel slope of 43 mV/dec was obtained for this electrode in 1.0 M KOH solution. Excellent durability of the Fe_xNi_(1-x)O_y/CP electrode in 1.0 M KOH solution was confirmed under a high current density of 136 mA/cm~2 at an overpotential of 340 mV.  相似文献   

11.
采用尿素作为氮源,通过热退火法制备氮掺杂还原氧化石墨烯,然后以乙酰丙酮钴作为钴源通过水热法制备氮掺杂还原氧化石墨烯/四氧化三钴杂化纳米片作为催化氧还原和氧析出反应的双功能催化剂。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线电子能谱仪(XPS)等对其进行形貌结构表征,通过旋转圆盘电极等电化学测试对其电催化性能进行分析,可以看出该催化剂具有良好的氧还原和氧析出催化性能。  相似文献   

12.
许友  任凯丽  徐蓉 《催化学报》2021,42(8):1370-1378
传统化石能源的大量消耗使得能源短缺和环境污染等问题日益严峻.社会的可持续发展需要进行能源结构调整,寻求清洁、可再生的替代能源已迫在眉睫.氢能作为一种可再生能源,其热值高,燃烧产物无污染,是未来最理想的能源形式之一.水裂解制氢是公认的未来清洁制氢的一种有效途径.然而,无论是电催化或光催化水裂解反应,析氧反应都是关键的半反...  相似文献   

13.
通过化学镀法制备了具有“三明治夹心”结构的Ni-P@Ni-B/Ni催化电极. 该催化材料为直径1 μm左右的微球. 电化学性能测试结果表明, 在电流密度为10 mA/cm 2时, 其在0.5 mol/L PBS缓冲液(pH=7)中的过电位仅为287 mV, 在此电位下连续工作24 h后, 电流密度仅衰减了7.6%. 同时Ni-P@Ni-B/Ni在酸性(0.5 mol/L H2SO4)和碱性(1 mol/L KOH)条件下也具有优异的析氢反应催化活性, 达到相同电流密度时过电位分别为199和79 mV. 该工作为全pH环境下高效电解水制氢提供了新思路.  相似文献   

14.
以氯化钴、 对叔丁基磺酰杯[4]芳烃(H4TC4A-SO2)和非对称性3-(1H-四唑-5-基)苯甲酸(H2L)为原料, 通过溶剂热法合成了一个具有四面体配位笼结构的16核化合物[Co16(TC4A-SO2)4(OH)4(L)8]·[(C8H20N)(C4H12N)2(C2H8N)]·solvent(Co16-TC4A-SO2). 采用X射线单晶衍射、 X射线粉末衍射、 热重分析、 红外光谱方法对配合物进行了表征. 将Co16-TC4A-SO2笼簇直接负载到碳纸上(Co16-TC4A-SO2/CP)用作工作电极, 其对析氧反应(OER)展现出较好的催化性能. 在1 mol/L KOH中, Co16-TC4A-SO2/CP在343.8 mV的过电位下达到10.0 mA/cm 2电流密度, Tafel斜率为79.31 mV/dec, 并且在20.0 mA/cm 2电流密度下表现出长达48 h的催化稳定性.  相似文献   

15.
Achieving efficient electrochemical communication between redox enzymes and various electrode materials is one of the main challenges in bioelectrochemistry and is of great importance for developing electronic applications. Cellobiose dehydrogenase (CDH) is an extracellular flavocytochrome composed of a catalytic FAD containing dehydrogenase domain (DH(CDH)), a heme b containing cytochrome domain (CYT(CDH)), and a flexible linker region connecting the two domains. Efficient direct electron transfer (DET) of CDH from the basidiomycete Phanerochaete chrysosporium (PcCDH) covalently attached to mixed self-assembled monolayer (SAM) modified gold nanoparticle (AuNP) electrode is presented. The thiols used were as follows: 4-aminothiophenol (4-ATP), 4-mercaptobenzoic acid (4-MBA), 4-mercaptophenol (4-MP), 11-mercapto-1-undecanamine (MUNH(2)), 11-mercapto-1-undecanoic acid (MUCOOH), and 11-mercapto-1-undecanol (MUOH). A covalent linkage between PcCDH and 4-ATP or MUNH(2) in the mixed SAMs was formed using glutaraldehyde as cross-linker. The covalent immobilization and the surface coverage of PcCDH were confirmed with surface plasmon resonance (SPR). To improve current density, AuNPs were cast on the top of polycrystalline gold electrodes. For all the immobilized PcCDH modified AuNPs electrodes, cyclic voltammetry exhibited clear electrochemical responses of the CYT(CDH) with fast electron transfer (ET) rates in the absence of substrate (lactose), and the formal potential was evaluated to be +162 mV vs NHE at pH 4.50. The standard ET rate constant (k(s)) was estimated for the first time for CDH and was found to be 52.1, 59.8, 112, and 154 s(-1) for 4-ATP/4-MBA, 4-ATP/4-MP, MUNH(2)/MUCOOH, and MUNH(2)/MUOH modified electrodes, respectively. At all the mixed SAM modified AuNP electrodes, PcCDH showed DET only via the CYT(CDH). No DET communication between the DH(CDH) domain and the electrode was found. The current density for lactose oxidation was remarkably increased by introduction of the AuNPs. The 4-ATP/4-MBA modified AuNPs exhibited a current density up to 30 μA cm(-2), which is ~70 times higher than that obtained for a 4-ATP/4-MBA modified polycrystalline gold electrode. The results provide insight into fundamental electrochemical properties of CDH covalently immobilized on gold electrodes and promote further applications of CDHs for biosensors, biofuel cells, and bioelectrocatalysis.  相似文献   

16.
Based on theoretical prediction, a g-C(3)N(4)@carbon metal-free oxygen reduction reaction (ORR) electrocatalyst was designed and synthesized by uniform incorporation of g-C(3)N(4) into a mesoporous carbon to enhance the electron transfer efficiency of g-C(3)N(4). The resulting g-C(3)N(4)@carbon composite exhibited competitive catalytic activity (11.3 mA cm(-2) kinetic-limiting current density at -0.6 V) and superior methanol tolerance compared to a commercial Pt/C catalyst. Furthermore, it demonstrated significantly higher catalytic efficiency (nearly 100% of four-electron ORR process selectivity) than a Pt/C catalyst. The proposed synthesis route is facile and low-cost, providing a feasible method for the development of highly efficient electrocatalysts.  相似文献   

17.
We report the fabrication and characterisation of a non-compartmentalised, mediator and cofactor free glucose-oxygen biofuel cell based on adsorbed enzymes exhibiting direct bioelectrocatalysis, viz. cellobiose dehydrogenase from Dichomera saubinetii and laccase from Trametes hirsuta as the anodic and cathodic bioelements, respectively, with the following characteristics: an open-circuit voltage of 0.73 V; a maximum power density of 5 microW cm(-2) at 0.5 V of the cell voltage and an estimated half-life of > 38 h in air-saturated 0.1 M citrate-phosphate buffer, pH 4.5 containing 5 mM glucose.  相似文献   

18.
The preparation, electrochemical and catalytic behaviour of glassy carbon electrodes modified by anthra-9,10-quinone, its amino derivatives and dyes were investigated. The stability of the modified electrodes was studied by cyclic voltammetry in acidic and neutral media. The electrocatalytic ability of the modified electrodes for the reduction of dioxygen to hydrogen peroxide was examined by cyclic voltammetry, chronoamperometry and chronocoulometry techniques. The influence of pH on the electrochemical and catalytic behaviour was studied and pH 5.0–8.0 was chosen as the optimum working pH by comparing the shift in oxygen reduction potential. The anthraquinone-adsorbed glassy carbon electrodes possess excellent electrocatalytic abilities for dioxygen reduction with overpotential ranging from 280 to 560 mV lower than that at a plain glassy carbon electrode. Hydrodynamic voltammetric studies were performed to determine the heterogeneous rate constants for the reduction of O2 at the surface of the modified electrodes, mass specific activity of the anthraquinones used and the apparent diffusion coefficient of O2 in buffered aqueous O2-saturated solutions. Studies showed the involvement of two electrons in dioxygen reduction.  相似文献   

19.
Copper active sites play a major role in biological and abiological dioxygen activation. Oxygen intermediates have been studied in detail for the proteins and enzymes involved in reversible O(2) binding (hemocyanin), activation (tyrosinase), and four-electron reduction to water (multicopper oxidases). These oxygen intermediates exhibit unique spectroscopic features indicative of new geometric and electronic structures involved in oxygen activation. The spectroscopic and quantum-mechanical study of these intermediates has defined geometric- and electronic-structure/function correlations, and developed detailed reaction coordinates for the reversible binding of O(2), hydroxylation, and H-atom abstraction from different substrates, and the reductive cleavage of the O-O bond in the formation water.  相似文献   

20.
将金属钴离子引入磷酸铝分子筛APO-5制得CoAPO-5分子筛,再把N,N-双水杨醛缩乙二胺(SALEN)希夫碱通过扩散进入CoAPO-5分子筛孔道并与其中的钴离子配位,形成了CoSALEN配合物,构成CoSALEN/APO-5复合材料.应用物理吸附法,以聚苯乙烯(PS)作粘结剂,将CoSALEN/APO-5涂敷在玻碳电极表面制成修饰电极PS/CoSALEN/APO-5/GCE.循环伏安法(CV)、计时电流法(CA)研究了该修饰电极在不同pH电解质溶液中的电化学行为以及对分子氧的催化还原作用.结果表明,制备的修饰电极能有效地催化分子氧的四电子还原,即氧气被电催化还原为水,据此提出可能的氧还原机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号