首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A series of poly(phenylene oxide) (PPO) polymers bearing phosphonic acid groups on the methyl group and on the phenyl ring are synthesized as membrane materials for fuel cell applications. These phosphonic acid‐based PPO membranes exhibited high chemical resistance, dimensional stability, and good proton conductivity even under low humidity condition. Among the membranes, the one in which the phosphonic acid moiety is attached to the polymer main chain with ? CO(CH2)5? shows highest proton conductivity under overall conditions even though it has the lowest water uptake and IEC value. A well‐defined separation of the hydrophilic and hydrophobic phases suggests the phosphonic acid groups to form proton conduction channels via interchain hydrogen bonding. A high storage modulus of the membranes in various temperature ranges indicates that the membranes are suitable for use under a high temperature and low humidity conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   

2.
A series of polystyrenes with phosphonic acid ( 5 ) via long alkyl side chains (4, 6, and 8 methylene units) were prepared by the radical polymerization of the corresponding diethyl ω‐(4‐vinylphenoxy)alkylphosphonates, followed by the hydrolysis with trimethylsilyl bromide. The resulting phosphonated polystyrene membranes had a high oxidative stability against Fenton's reagent at room temperature. The membranes prepared from 5 exhibited a very low water uptake, similar to that of Nafion 117 over the wide range of 30 to 80% relative humidity (RH). The proton conductivities of these membranes are lower than that of Nafion 117 in the range of 30 to 90% RH, but comparable or higher than those of the reported phosphonated polymers with higher IEC values, such as the phosphonated poly(N‐phenylacrylamide) (PDPAA, IEC: 6.72 mequiv/g) and fluorinated polymers with pendant phosphonic acids (M47, IEC: 8.5 mequiv/g), at low RH conditions despite the much lower IEC values (3.0–3.8 mequiv/g) of these membranes. These results suggest that the flexible pendant side chains of 5 would contribute to the formation of hydrogen‐bonding networks by considering the very low water uptake of these polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A series of soluble, benzimidazole‐based polymers containing sulfonic acid groups (SuPBI) has been synthesized. SuPBI membranes resist extensive swelling in water but are poor proton conductors. When blended with high ion exchange capacity (IEC) sulfonated poly(ether ether ketone) (SPEEK), a polymer that has high proton conductivity but poor mechanical integrity, ionic crosslinks form reducing the extent of swelling. The effect of sulfonation of PBI on crosslinking in these blends was gauged through comparison with nonsulfonated analogs. Sulfonic acid groups present in SuPBI compensate for acid groups involved in crosslinking, thereby increasing IEC and proton conductivity of the membrane. When water uptake and proton conductivity were compared to the IEC of blends containing either sulfonated or nonsulfonated PBI, no noticeable distinction between PBI types could be made. Comparisons were also made between these blends and pure SPEEK membranes of similar IEC. Blend membranes exhibit slightly lower maximum proton conductivity than pure SPEEK membranes (60 vs. 75 mS cm?1) but had significantly enhanced dimensional stability upon immersion in water, especially at elevated temperature (80 °C). Elevated temperature measurements in humid environments show increased proton conductivity of the SuPBI membranes when compared with SPEEK‐only membranes of similar IEC (c.f. 55 for the blend vs. 42 mS cm?1 for SPEEK at 80 °C, 90% relative humidity). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3640–3650, 2010  相似文献   

4.
刘璐  陈康成 《高分子学报》2020,(4):393-402,I0004
以不同摩尔比的4,4′-双(4-(2-苯基乙二酮基)苯氧基联苯、4,4′-双(2-苯基乙二酮基)二苯醚与3,3′,4,4′-四氨基联苯共聚制备聚喹喔啉,经后磺化法得到一系列磺化度可控的磺化聚苯基喹喔啉(SPPQ).模型化合物确认,磺酸基团精确接入电子云密度较高的含醚键的联苯片段的2,2′-位上,证明通过单体分子结构设计与后磺化法结合,可使磺酸基团在温和条件下,按预想接入到聚合物主链上,达到磺化度和磺化位置精确可控的目的. SPPQ的相对黏度均在3.8 dL/g以上.通过溶液涂膜法制备的主链型磺化聚苯基喹喔啉质子交换膜(SPPQ PEM)的吸水率都低于39%,尺寸变化率为2.1%~13%,且随着IEC和温度的提高而线性增加.如,80℃下,IEC高达2.21 meq/g的SPPQ-5的膜面和膜厚方向的尺寸变化率仅为11%和13%,具有良好的形状维持能力.热重分析表明,SPPQ PEM在320℃左右脱去磺酸基团,550℃左右发生聚合物主链降解,具有良好的热稳定性. Fenton试剂测试表明,SPPQ PEM开始破碎的时间随IEC的增加而缩短,在20℃时,IEC较低的SPPQ-1 (1.29 meq/g)破碎时间可达151 h,而IEC较高的SPPQ-5(2.21 meq/g)破碎时间缩短至81 h. PEM的质子传导率随温度和IEC的增加而显著提高,最高可达64 mS/cm,由于磺酸基团和喹喔啉酸碱对的形成以及吸水率偏低的原因,这一数值远低于Nafion.  相似文献   

5.
比较了3种主链结构相同而侧链结构不同的磺化聚芳醚(SPAE)材料的性能. 分析了侧链结构对聚合物的吸水、 溶胀及质子传导行为的影响. 结果表明, 在相同的离子交换容量(IEC)条件下, 具有柔顺脂肪族侧链的聚芳醚材料具有较高的质子传导率. 其原因是由于柔顺的脂肪族侧链比刚性的芳香族侧链更易运动, 有利于侧链末端磺酸基团的聚集, 进而形成离子簇. 3种聚合物微观形貌的分析结果表明, 含柔顺侧链结构的聚合物薄膜具有更大的质子传输通道, 其结果与聚合物的宏观吸水和传导现象相吻合.  相似文献   

6.
The dynamics and mechanism of proton exchange in phosphonic acid‐functionalized polymers were studied using poly(vinyl‐phosphonic acid) (PVPA) as a model system along with quantum chemical calculations and Born–Oppenheimer molecular dynamics (BOMD) simulations at the B3LYP/TZVP level as model calculations. This theoretical study began with searching for the smallest, most active polymer segments and their intermediate conformations which could be involved in the local proton‐exchange process. The B3LYP/TZVP results confirmed that a low local dielectric environment and excess proton conditions are required to generate the intermediate conformations, and the shapes of the potential energy curves of the proton exchange between the two phosphonic acid functional groups are sensitive to the local conformational changes. In contrast, a high local dielectric environment increases the energy barriers, thereby preventing the proton from returning to the original functional group. Based on the static results, a mechanism for the proton exchange between the two functional groups involving fluctuations in the local dielectric environment and a local conformational change was proposed. The BOMD results confirmed the proposed mechanism by showing that the activation energies for the proton exchange in the hydrogen bond between two immobilized phosphonic acid moieties, obtained from the exponential relaxation behaviors of the envelopes of the velocity autocorrelation functions and the 1H Nuclear Magnetic Resonance (NMR) line‐shape analyses, are too low to be the rate‐determining process. Instead, coupled librational motion in the backbone which leads to the interconversion between the two intermediate conformations possesses higher activation energy, and therefore represents one of the most important rate‐determining processes. These findings suggested that the rate of the proton exchange in the model phosphonic acid‐functionalized polymer is determined by the polymer mobility which, in this case, is the large‐amplitude librational motion of the vinyl backbone. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
A novel phosphonic acid containing bisphenol was successfully synthesized from phenolphthalein and m‐aminophenylphosphonic acid. A series of homo‐ and copoly‐(arylene ether)s containing phosphonic acid groups were prepared by solution nucleophilic polycondensation. These phosphonic acid containing polymers can readily be dissolved in common organic solvents, such as dimethyl sulfoxide, N‐methyl‐2‐pyrrolidinone, and N‐cyclohexylpyrrolidinone, and can be cast into tough and smooth films. The presence of phosphonic acid pendants in the poly‐(arylene ether)s was confirmed by NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and conductivity measurements. This is the first report on the attachment of phenylphosphonic acid groups as side chains to aromatic polyethers. These poly‐(arylene ether)s had very high glass‐transition temperatures ranging from 254 to >315 °C and high molecular weights. The conductivities of the synthesized polymers were analyzed by the Cole–Cole method, and they ranged from 10?5 to 10?6 Scm?1. The synthesized polymers also exhibited good solution processability. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3218–3226, 2001  相似文献   

8.
A novel series of benzimidazole‐containing sulfonated poly(arylene sulfones)s with controllable amount of basic 2,6‐bis(benzimidazol‐2‐yl)pyridine (BIP) and sulfonic acid groups have been prepared by the copolycondensation of a new BIP‐containing arylene difluoride monomer (DFSBIP) with a sulfonated arylene difluoride (DSDFS) and 4,4′‐biphenol (BP). All the resulting polymers have high molecular weights, good thermal stability, and can form uniform and tough membranes by simple solution casting. Because of the strong acid–base interaction between BIP and sulfonic acid groups, ionic crosslinking networks forms that resulted in polymer membranes with good dimensional stability in water even at high temperature (e.g., 100 °C). The ion exchange capacity (IEC) of the polymer membranes was investigated through a new simple pH‐determination method. A comparison between the experimental IEC values with the calculated ones based on the polymer structures indicated that each BIP unit interacted with one sulfonic acid group. Thus, by controlling the relative content of BIP units and sulfonate groups in the polymers, the intra‐ and intermolecular acid–base interactions could be readily optimized so as to achieve polymers with high IEC values, high proton conductivities as well as low swelling ratios, demonstrating good potential for proton exchange membrane applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1920–1929, 2009  相似文献   

9.
提高质子交换膜燃料电池(PEMFCs)的工作温度,不但可以提高电催化剂的活性以及电催化剂对原料气中CO等杂质气体的耐受能力,少用甚至不用Pt 等贵金属作电催化剂,还可以简化PEMFCs的水热管理系统,提高PEMFCs的综合能量转化效率. 实现高温PEMFCs的核心是开发能够适用于高温PEMFCs的高温质子交换膜(HT-PEM),是PEMFCs的研究热点. 在众多HT-PEM候选材料中,基于膦酸基的质子交换膜材料是最具前途的候选材料之一,是制备HT-PEM的主要研究方向. 本文综述了基于膦酸基的HT-PEM的研究进展,讨论了膦酸基参与的质子传导机理,比较了纯聚合物膦酸膜、膦酸基接枝改性膜、酸-碱两性膜、掺杂型复合膜的电导率、物理化学稳定性、机械性能等. 最后,展望了基于膦酸基的HT-PEM的发展趋势.  相似文献   

10.
The possible use of sulfonic acid, phosphonic acid, or imidazole as the protogenic group in polymer electrolyte membranes for fuel cells operating at intermediate temperature (T>100 degrees C) and very low humidity conditions is examined by comparing specific molecular properties obtained with first principles based electronic structure calculations. Potential energy profiles determined at the B3LYP/6-311G** level for rotation of imidazole, phosphonic acid and sulfonic acid functional groups on saturated heptyl chains revealed that the torsional barriers are 3.9, 10.0, and 15.9 kJ mol-1, respectively; indicating that the imidazole is clearly the most labile when tethered to an alkyl chain. Minimum energy conformations (B3LYP/6-311G**) of methyl dimers of each of the acids indicated that the binding of the pairs of the acids is greatest in the phosphonic acids and lowest for the imidazoles. Comparison of the ZPE corrected total energies of the methyl acid dimers with corresponding pairs consisting of the conjugate acid and conjugate base revealed that the energy penalty in transferring the proton (from acid to acid) was greatest for imidazole (120.1 kJ mol-1) and least for the phosphonic acid (37.2 kJ mol-1). This result is in agreement with experimentally measured proton conductivities of acid-functionalized heptyl compounds under dry conditions and further underpins the observation that phosphonic acid possesses the best amphoteric character critical in achieving proton conductivity when no solvent (i.e. water) is present. Finally, BSSE corrected binding energies were computed for the methyl acids with a single water molecule and indicated that while the magnitude of the interaction of the sulfonic and phosphonic acids with water are similar (47.3 and 44.4 kJ mol-1, respectively), the binding is much weaker to the imidazole (28.8 kJ mol-1). This result suggests that the oxo-acids will probably retain water better under very low humidity conditions and that the dynamics of the hydrogen bonding of the first hydration water molecules will be more constrained with -SO3H and -PO3H2 than imidazole.  相似文献   

11.
A series of parent poly(aryl ether ketone)s bearing different content of unsaturated pendant propenyl groups were synthesized via nucleophilic substitution polymerization from 3,3′-diallyl-4,4′-dihydroxybiphenyl, 9,9′-bis(4-hydroxyphenyl) fluorene and 4,4′-difluorobenzophenone. The polymers with pendant aliphatic sulfonic acid groups were further synthesized by free radical thiol-ene coupling reactions between 3-mercapto-1-propanesulfonic sodium and the parent propenyl functional copolymers. The resulting sulfonated polymers with high inherent viscosity (1.83-4.69 dL/g) were soluble in polar organic solvents and can form flexible and transparent membranes by casting from their solutions. The copolymers with different ion exchange capacity could be conveniently synthesized by varying the monomers ratios. Transmission electron microscopy (TEM) was used to examine the microstructures of the membrane and the results revealed that significant hydrophilic/hydrophobic microphase separation with spherical, uniform-sized (5-10 nm) and well-dispersed hydrophilic domains was afforded. The proton conductivities of the as-prepared membranes and the state-of-the-art Nafion 117 membrane in fully hydrated state were investigated. The results revealed that the proton conductivity of the synthesized membranes increased more remarkably than that of Nafion 117 membrane with increasing temperature. The membrane with 1.69 mequiv/g of IEC had a conductivity of 2.5 × 10−2 Scm−1 at 100 °C. The membranes also possessed excellent mechanical properties, good thermal, oxidative, hydrolytic and dimensional stabilities.  相似文献   

12.
The effect of ion exchange capacity (IEC) on the water sorption properties of high IEC, short side chain (SSC) PFSA ionomer membranes, and the relationships between water content, proton conductivity, proton mobility, water permeation, oxygen diffusion, and oxygen permeation are investigated. SSC PFSA ionomer membranes possessing 1.3, 1.4, and 1.5 mmol g(-1) IEC are compared to a series of long side chain (LSC) PFSA ionomer membranes ranging in IEC from 0.9 to 1.13 mmol g(-1). At 25 °C, fully-hydrated SSC ionomer membranes are characterized as possessing higher water contents (56-75 vol%), moderate λ values (15-18), high analytical acid concentrations (2-2.8 M), and moderate conductivity (88-115 mS/cm); but lower than anticipated effective proton mobility. Complementary measurements of water permeability, oxygen diffusion, and oxygen permeability also yield lower than expected values given their much higher water contents. Potential benefits afforded by reducing the side chain length of PFSA ionomer membranes, such as increased crystallinity, higher IEC, and high hydrated acid concentration are offset by a less-developed, frustrated hydrophilic percolation network, which provides a motivation for future improvements of transport properties for this class of material.  相似文献   

13.
A new class of sulfonated poly(fluorene-co-sulfone)ether membranes containing perfluorocyclobutane (PFCB) groups were synthesized and characterized in terms of their electrochemical properties as proton exchange membranes for fuel cells. Two monomers, 9,9-bis(4-trifluorovinyloxyphenyl)fluorene and 4,4′-sulfonyl-bis(trifluorovinyloxy)biphenyl were synthesized and statistically copolymerized by thermal [2π + 2π] cycloaddition to yield a series of polymers containing 0–60 mol% of fluorenyl content (PFS-X). The copolymers were then sulfonated using chlorosulfonic acid to afford five kinds of ionomers with different sulfonation levels (SPFS-X), which were cast into membranes and analyzed in terms of electrochemical properties. It was found that the ion exchange capacity (IEC), water uptake, proton conductivity and methanol permeability values of SPFS-X increased with the increment of the sulfonated fluorenyl content. The proton conductivities of SPFS-50 and -60 with high IECs and water uptake values were higher than those of Nafion-115 between 25 and 80 °C. The methanol permeability of SPFS-X was considerably lower than that of Nafion-115.  相似文献   

14.
Sequential processing of multiply functionalized mesoporous films is shown to yield materials that are compositionally and structurally heterogeneous on mesoscopic and molecular length scales, both of which must be controlled to optimize macroscopic ion-conduction properties. Cubic mesoporous silica films prepared from strongly acidic solutions were subsequently functionalized under highly alkaline conditions to incorporate hydrophilic aluminosilica surface moieties, followed by nonaqueous conditions to introduce perfluorosulfonic-acid surface groups. Such sequential combination of individually incompatible steps yielded stable mesoporous films with high surface hydrophilicities and strong acid functionalities that exhibited high proton conductivities (ca. 9 × 10(-2) S/cm) at elevated temperatures (120 °C). Molecular, mesoscopic, and macroscopic properties of the multiply functionalized films were monitored and correlated at each stage of the syntheses by nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), elemental analysis, adsorption, and ion conductivity measurements. In particular, variable-temperature solid-state two-dimensional (2D) (27)Al{(1)H}, (29)Si{(1)H}, (27)Al{(19)F}, and (29)Si{(19)F} HETeronuclear chemical-shift CORrelation (HETCOR) NMR spectra reveal separate surface adsorption and grafting sites for the different functional surface species within the mesopore channels. The hydrophilic aluminosilica and acidic fluoro-group loadings and interaction sites are demonstrated to be strongly affected by the different synthesis and functionalization treatments, which must be separately and collectively optimized to maximize the proton conductivities.  相似文献   

15.
This work concerns the development of hybrid organic/inorganic membranes from styrenic phosphonic polymers. The phosphonic charge, composed phosphonic polymers grafted onto silica nanoparticles, was obtained by “grafting onto” method. It consists of synthesizing first the polymer, and then the terminal functions of the latter react with silanol groups of silica. The phosphonated polymer was isolated in two steps, that is, an ATRP polymerization of 4‐chloromethylstyrene followed by Mickaelïs‐Arbusov reaction. After the grafting onto silica, membranes are prepared through formulation containing the charge and the polymer matrix PVDF‐HFP, which are dispersed in DMF. The acid form is obtained by hydrolysis in chlorydric acid. The membrane possessing a 40 wt % charge ratio (IEC = 1.08 meq g?1) was selected as reference. A proton conductivity of 65 mS cm?1 at 80 °C was measured in immersed conditions. When the membrane is no more immersed, the value decreases drastically (0.21 mS cm?1 at 120 °C and 25% RH). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
1D anhydrous proton conduction is enhanced significantly in ionic channels created by self-assembly of functionalized organic phosphonic acid and aromatic heterocyclic 1,2,4-triazole molecules. This study reveals high proton conduction in one dimension through a well-defined supramolecular architecture in which two different molecules undergo host–guest synergy and self-assemble to provide two-fold advantages: 1) formation of the ionic channels and 2) higher proton conduction in the absence of water. A clear correlation is found between the phenomena of ionic channels and anhydrous conductivity in the absolute dry state and we demonstrate that the one-dimensional conductivity can be as high as that recorded for 3D channels in, for instance, Nafion.  相似文献   

17.
This paper describes the preparation and electrochemical properties of new proton conducting polymer membranes, sulfonated poly(fluorenyl ether) membrane-containing perfluorocyclobutane (PFCB) moieties for fuel cell applications. The sulfonated polymers were prepared via thermal cyclodimerization of 9,9-bis(4-trifluorovinyloxyphenyl)fluorene and subsequent post-sulfonation using chlorosulfonic acid (CSA) as a sulfonating agent. The post-sulfonation reaction was carried out by changing the molar ratio of CSA/repeating unit of the polymer at room temperature for 5 h and the resulting sulfonated polymers showed different degrees of sulfonation (DS) and ion exchange capacities (IEC). With the increment of CSA content, the DS, IEC and water uptake of the sulfonated polymer membranes increased. Their proton conductivity was investigated as a function of temperature. The polymer membrane with an IEC value of 1.86 mmol/g showed a water content of 25% similar to Nafion-115's but showed higher proton conductivity than Nafion-115 over the temperature 25–80 °C. The polymer membrane with lower water uptake and higher IEC showed similar proton conductivity and methanol permeability to Nafion-115. These results confirmed that the sulfonated poly(fluorenyl ether)-containing PFCB groups could be a promising material for fuel cell membranes.  相似文献   

18.
Hybrid organic–inorganic approaches are used for the synthesis of bifunctional proton exchange membrane fuel cell (PEMFC) membranes owing to their ability to combine the properties of a functionalized inorganic network and an organic thermostable polymer. We report the synthesis of both sulfonic and phosphonic acid functionalized mesostructured silica networks into a poly(vinylidenefluoride‐co‐hexafluoropropylene) (poly(VDF‐co‐HFP) copolymer. These membranes, containing different amounts of phosphonic acid and sulfonic acid groups, have been characterized using FTIR and NMR spectroscopy, SA‐XRD, SAXS, and electrochemical techniques. The proton conductivity of the bifunctional hybrid membranes depends strongly on hydration, increasing by two orders of magnitude over the relative humidity (RH) range of 20 to 100 %, up to a maximum of 0.031 S cm−1 at 60 °C and 100 % RH. This value is interesting as only half of the membrane conducts protons. This approach allows the synthesis of a porous SiO2 network with two different functions, having  SO3H and  PO3H2 embedded in a thermostable polymer matrix.  相似文献   

19.
Partially sulfonated poly(aryl ether sulfone) (PESS) was synthesized and methacrylated via reaction with glycidyl methacrylate (PESSGMA) and cross‐linked via radical polymerization with styrene and vinyl‐phosphonic acid (VPA). The chemical structures of the synthesized pre‐polymers were characterized via FTIR and 1H NMR spectroscopic methods and molecular weight was determined via GPC. Membranes of these polymers were prepared via solution casting method. The crosslinking of the PESS polymer reduced IEC, proton conductivity, swelling in water, and methanol permeability of the membranes while increasing the modulus and the glass transition temperature. However, the introduction of the VPA comonomer increased the proton conductivity while maintaining excellent resistance to methanol cross‐over, which was significantly higher as compared with both PESS and the commercial Nafion membranes. Membranes of PESSGMA copolymers incorporating VPA, exhibited proton conductivity values at 60 °C in the range of 16–32 mS cm−1 and methanol permeability values in the range of 6.52 × 10−9 – 1.92 × 10−8 cm2 s−1. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 558–575  相似文献   

20.
A novel sulfonated tetraamine, di(triethylammonium)-4,4′-bis(3,4-diaminophenoxy)biphenyl-3,3′-disulfonate (BAPBDS), was successfully synthesized by nucleophilic aromatic substitution of 4,4′-dihydroxybiphenyl with 5-chloro-2-nitroaniline, followed by sulfonation and reduction. A high-temperature polycondensation of sulfonated tetraamine, non-sulfonated tetraamine (4,4′-bis(3,4-aminophenoxy)biphenyl) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (a) or 4,4′-binaphthyl-1,1′,8,8′-tetracarboxylic dianydride (b) gave the poly[bis(benzimidazobenzisoquinolinones)] ionomers SPBIBI-a(x) or SPBIBI-b(x), where x refers to the molar percentage of the sulfonated tetraamine monomer. Flexible and tough membranes of high mechanical strength were obtained by solution casting and the electrolyte properties of the polymers were intensively investigated. The ionomer membranes displayed excellent dimensional and hydrolytic stabilities. Moreover, these novel membranes showed proton conductivities comparable to that of Nafion 117, especially at high temperature. In addition, the proton conductivities of the SPBIBI-a ionomer membranes were found to be higher than those of the SPBIBI-b ones due to the weakened acid–base interactions between the pyridinone ring and the sulfonic acid groups. The highest proton conductivity (0.174 S/cm) was obtained for the SPBIBI-a(100) membrane at 100 °C, with an IEC of 2.65 mequiv./g. A combination of excellent dimensional and hydrolytic stabilities indicated that the SPBIBI ionomers were good candidate materials for proton exchange membrane in fuel cell applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号