首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper focuses on the scheduling problem of minimizing makespan for a given set of jobs in a two-stage hybrid flowshop subject to a product-mix ratio constraint. There are identical parallel machines at the first stage of the hybrid flowshop, while there is a single batch-processing machine at the second stage. Ready times of the jobs (at the first stage) may be different, and a given product-mix ratio of job types should be kept in each batch at the second stage. We present three types of heuristic algorithms: forward scheduling algorithms, backward scheduling algorithms, and iterative algorithms. To evaluate performance of the suggested algorithms, a series of computational experiments are performed on randomly generated test problems and results are reported.  相似文献   

3.
This study investigates the performance of scheduling heuristics in a flow shop with multiple processors. We investigated five better performing flow shop heuristics for their performances of makespan and mean flow time criteria in a flow shop with multiple processors. The study examined the effects of problem characteristics (number of jobs, number of machine stages and number of parallel processors at each stage) and the performance of heuristics using regression analysis. We found that although structural characteristics explain most of the variation in performance, heuristics also had an effect. The experimental results showed that flow shop heuristics developed by Nawaz, Enscore, and Ham and that of Ho were comparable in performance in a flow shop with multiple processors. However, the former was slightly more consistent in results for both criteria.  相似文献   

4.
We study scheduling problems with multiple modes and dedicated resources arising in production and project management, which constitute a special class of the general multimode resource-constrained project scheduling problem. A task may require simultaneously a set of discrete, renewable resources to be processed and the processing can be performed in different modes, that is with different resource sets, processing times, or costs. Precedence constraints can exist among tasks. The total budget that can be allocated to the project can be limited. The problem consists of identifying a mode for each task and a starting time for its processing respecting precedence, resource, and budget constraints. A graph model and an iterative solution scheme are presented. Specific heuristic algorithms for the cases with and without budget constraints are given and computational results are discussed.  相似文献   

5.
In this paper, the problem of scheduling in a Kanban system with dual blocking mechanisms is considered. These blocking mechanisms are due to part-type and queue size. For such a type of static Kanban system, recursive equations are formulated for timetabling of containers. Subsequently, two heuristics are proposed with the twin objectives of minimizing the total weighted waitingtime of containers and total weighted flowtime of part-types. The results of computational evaluation are presented and discussed.  相似文献   

6.
This paper addresses the central spanning tree problem (CTP). The problem consists in finding a spanning tree that minimizes the so-called robust deviation, i.e. deviation from a maximally distant tree. The distance between two trees is measured by means of the symmetric difference of their edge sets. The central tree problem is known to be NP-hard. We attack the problem with a hybrid heuristic consisting of: (1) a greedy construction heuristic to get a good initial solution and (2) fast local search improvement. We illustrate computationally efficiency of the proposed approach.  相似文献   

7.
The knapsack container loading problem is the problem of loading a subset of rectangular boxes into a rectangular container of fixed dimensions such that the volume of the packed boxes is maximized. A new heuristic based on the wall-building approach is proposed, which decomposes the problem into a number of layers which again are split into a number of strips. The packing of a strip may be formulated and solved optimally as a Knapsack Problem with capacity equal to the width or height of the container. The depth of a layer as well as the thickness of each strip is decided through a branch-and-bound approach where at each node only a subset of branches is explored.Several ranking rules for the selection of the most promising layer depths and strip widths are presented and the performance of the corresponding algorithms is experimentally compared for homogeneous and heterogeneous instances. The best ranking rule is then used in a comprehensive computational study involving large-sized instances. These computational results show that instances with a total box volume up to 90% easily may be solved to optimality, and that average fillings of the container volume exceeding 95% may be obtained for large-sized instances.  相似文献   

8.
In this paper, we consider the problem of scheduling tasks on unrelated parallel machines. Precedence constraints between the tasks form chains of tasks. We propose a number of heuristics in order to find near optimal solutions to the problem. Empirical results show that the heuristics are able to find very good approximate solutions.  相似文献   

9.
10.
Heuristics for the fixed cost median problem   总被引:4,自引:0,他引:4  
We describe in this paper polynomial heuristics for three important hard problems—the discrete fixed cost median problem (the plant location problem), the continuous fixed cost median problem in a Euclidean space, and the network fixed cost median problem with convex costs. The heuristics for all the three problems guarantee error ratios no worse than the logarithm of the number of customer points. The derivation of the heuristics is based on the presentation of all types of median problems discussed as a set covering problem.  相似文献   

11.
Professional sports leagues are a major economic activity around the world. Teams and leagues do not want to waste their investments in players and structure in consequence of poor schedules of games. Game scheduling is a difficult task, involving several decision makers, different types of constraints, and multiple objectives to optimize. The traveling tournament problem abstracts certain types of sport timetabling issues, where the objective is to minimize the total distance traveled by the teams. In this work, we tackle the mirrored version of this problem. We first propose a fast and effective constructive algorithm. We also describe a new heuristic based on the combination of the GRASP and iterated local search metaheuristics. A strong neighborhood based on ejection chains is also proposed and leads to significant improvements in solution quality. Very good solutions are obtained for the mirrored problem, sometimes even better than those found by other approximate algorithms for the less constrained non-mirrored version. Computational results are shown for benchmark problems and for a large instance associated with the main division of the 2003 edition of the Brazilian soccer championship, involving 24 teams.  相似文献   

12.
A general algorithm, called ALG, for online and semi-online scheduling problem Pm||C max with m ≥ 2 is introduced. For the semi-online version, it is supposed that all job have their processing times within the interval [p, rp], where p > 0,1 < rm/m − 1. ALG is a generalization of LS and is optimal in the sense that there is not an algorithm with smaller competitive ratio than that of ALG.  相似文献   

13.
This paper presents extensive computational experiments to compare 10 heuristics and 20 metaheuristics for the maximum diversity problem (MDP). This problem consists of selecting a subset of maximum diversity from a given set of elements. It arises in a wide range of real-world settings and we can find a large number of studies, in which heuristic and metaheuristic methods are proposed. However, probably due to the fact that this problem has been referenced under different names, we have only found limited comparisons with a few methods on some sets of instances. This paper reviews all the heuristics and metaheuristics for finding near-optimal solutions for the MDP. We present the new benchmark library MDPLIB, which includes most instances previously used for this problem, as well as new ones, giving a total of 315. We also present an exhaustive computational comparison of the 30 methods on the MDPLIB. Non-parametric statistical tests are reported in our study to draw significant conclusions.  相似文献   

14.
In this paper, we propose fast heuristics for the vehicle routing problem (VRP) with lexicographic max-order objective. A fixed number of vehicles, which are based at a depot, are to serve customers with known demands. The lexicographic max-order objective is introduced by asking to minimize lexicographically the sorted route lengths. Based on a model for this problem, several approaches are studied and new heuristic solution procedures are discussed resulting in the development of a sequential insertion heuristic and a modified savings algorithm in several variants. Comparisons between the algorithms are performed on instances of the VRP library VRPLIB. Finally, based on the results from the computational experiments, conclusions about the applicability and efficiency of the presented algorithms are drawn.  相似文献   

15.
We consider a telecommunication problem in which the objective is to schedule data transmission to be as fast and as cheap as possible. The main characteristic and restriction in solving this multiobjective optimization problem is the very limited computational capacity available. We describe a simple but efficient local search heuristic to solve this problem and provide some encouraging numerical test results. They demonstrate that we can develop a computationally inexpensive heuristic without sacrificing too much in the solution quality.  相似文献   

16.
In shipping services, the goal is to propose cyclical routes which ensure transport of required goods among the main centers of the regions. It is classified as a pickup and delivery problem with split demand and reloading. The objective is to minimize total shipping costs, or the total length of all cyclical routes. The optimum solution gives a number of vehicles going on arcs of the communication network and the amount of goods being transported on the arcs. Consequently, cyclical routes and depots are proposed for all vehicles. First, the multi-graph, in which each directed arc corresponds to exactly one vehicle, is generated. The multi-graph satisfies the condition that the number of arcs entering each node equals the number of arcs exiting the node. The heuristic method of loading goods onto a vehicle in the pickup node and to transport it to the delivery node without reloading onto another vehicle is proposed. The method is verified in the case study carried out on the DHL company.  相似文献   

17.
The capacitated minimum spanning tree (CMST) problem is fundamental to the design of centralized communication networks. In this paper we consider the multi-level capacitated minimum spanning tree problem, a generalization of the well-known CMST problem. Based on work previously done in the field, three heuristics are presented, addressing unit and non-unit demand cases. The proposed heuristics have been also integrated into a mixed integer programming solver. Evaluation results are presented, for an extensive set of experiments, indicating the improvements that the heuristics bring to the particular problem.  相似文献   

18.
This paper presents two new heuristics for the flowshop scheduling problem with sequence-dependent setup times (SDSTs) and makespan minimization objective. The first is an extension of a procedure that has been very successful for the general flowshop scheduling problem. The other is a greedy randomized adaptive search procedure (GRASP) which is a technique that has achieved good results on a variety of combinatorial optimization problems. Both heuristics are compared to a previously proposed algorithm based on the traveling salesman problem (TSP). In addition, local search procedures are developed and adapted to each of the heuristics. A two-phase lower bounding scheme is presented as well. The first phase finds a lower bound based on the assignment relaxation for the asymmetric TSP. In phase two, attempts are made to improve the bound by inserting idle time. All procedures are compared for two different classes of randomly generated instances. In the first case where setup times are an order of magnitude smaller than the processing times, the new approaches prove superior to the TSP-based heuristic; for the case where both processing and setup times are identically distributed, the TSP-based heuristic outperforms the proposed procedures.  相似文献   

19.
Consider n jobs to be sequenced on a single machine. The objective functions to be minimized are the holding cost and the maximum tardiness. We first characterize the set of efficient points and then proceed to give a pseudo-polynomial algorithm to enumerate all these efficient points. Computational results illustrate the usefulness of the procedure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号