首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a scheduling problem with deteriorating jobs, that is, jobs whose processing times are an increasing function of their start times. We consider the case of a single machine and linear job-independent deterioration. The problem is to determine an optimal combination of the due-date and schedule so as to minimize the sum of due-date, earliness and tardiness penalties. We give an O(n log n) time algorithm to solve this problem.  相似文献   

2.
We consider a parallel-machine scheduling problem of minimizing the total completion time. The processing time of a job is a linear function of its starting time and deterioration rate. This problem is known to be NP-hard, even for the case with two machines. In this note, we generalize an existing lower bound for the two-machine case to the general case with an arbitrary number of machines. Despite the generalization concerning machine number, our bound has one extra term that makes our bound tighter than the existing one.  相似文献   

3.
This paper is to analyze unrelated parallel-machine scheduling resource allocation problems with position-dependent deteriorating jobs. Two general resource consumption functions, the linear and convex resource, are investigated. The objectives are to minimize the cost function that includes the weights of total load, total completion time, total absolute deviation of completion time, and total resource cost. Moreover, we try to minimize the cost function that includes the weights of total load, total waiting time, total absolute deviation of waiting time, and total resource cost. Although each job processing time can be compressed through incurring an additional cost, we show that the problems are polynomial time solvable when the number of machines is fixed.  相似文献   

4.
In this paper, we consider a single-machine common due-window assignment scheduling problem with deteriorating jobs. Jobs’ processing times are defined by function of their starting times and job-dependent deterioration rates that are related to jobs and are not all equal. The objective is to determine an optimal combination of sequence and common due-window location so as to minimize the weighted sum of earliness, tardiness and due-window location penalties. We propose an O(n2 log n) time algorithm to solve the problem and discuss several instances to illustrate it.  相似文献   

5.
Journal of the Operational Research Society - In this note, we study a single-machine scheduling problem with deteriorating jobs whose processing times are an increasing function of their start...  相似文献   

6.
We consider parallel-machine job scheduling problems with precedence constraints. Job processing times are variable and depend on positions of jobs in a schedule. The objective is to minimize the maximum completion time or the total weighted completion time. We specify certain conditions under which the problem can be solved by scheduling algorithms applied earlier for fixed job processing times.  相似文献   

7.
Due-date assignment and maintenance activity scheduling problem   总被引:1,自引:0,他引:1  
In the scheduling problem addressed in this note we have to determine: (i) the job sequence, (ii) the (common) due-date, and (iii) the location of a rate modifying (maintenance) activity. Jobs scheduled before (after) the due-date are penalized according to their earliness (tardiness) value. The processing time of a job scheduled after the maintenance activity decreases by a job-dependent factor. The objective is minimum total earliness, tardiness and due-date cost. We introduce a polynomial (O(n4)) solution for the problem.  相似文献   

8.
This paper considers some scheduling problems with deteriorating jobs. The objectives are to minimize the makespan, the total completion time, the total absolute deviation of completion time, the earliness, tardiness, and due date penalty, the sum of earliness penalties subject to no tardy jobs, respectively. We also explore two resource constrained scheduling problems: how to minimize the resource consumption with makespan constraints and how to minimize the makespan with the total resource consumption constraints. Several polynomial time algorithms are proposed to optimally solve the problems with the above objective functions.  相似文献   

9.
Multi-machine scheduling with deteriorating jobs and scheduled maintenance   总被引:1,自引:0,他引:1  
In this paper, we investigate a multi-machine scheduling problem in which job processing times are increasing functions of their starting times and machines are not always available. Job processing times are assumed to follow simple linear deteriorations. Moreover, each machine is assumed to have a maintenance period which is known in advance. Both the resumable and non-resumable cases are discussed with the objective of minimizing the makespan. A lower bound and a heuristic algorithm are derived for each case. Numerical results are also provided to evaluate the efficiency of the proposed procedures.  相似文献   

10.
In many realistic scheduling settings a job processed later consumes more time than the same job processed earlier – this is known as scheduling with deteriorating jobs. Most research on scheduling with deteriorating jobs assumes that the actual processing time of a job is an increasing function of its starting time. Thus a job processed late may incur an excessively long processing time. On the other hand, setup times occur in manufacturing situations where jobs are processed in batches whereby each batch incurs a setup time. This paper considers scheduling with deteriorating jobs in which the actual processing time of a job is a function of the logarithm of the total processing time of the jobs processed before it (to avoid the unrealistic situation where the jobs scheduled late will incur excessively long processing times) and the setup times are proportional to the actual processing times of the already scheduled jobs. Under the proposed model, we provide optimal solutions for some single-machine problems.  相似文献   

11.
Scheduling with deteriorating jobs and learning effects has been widely studied. However, multi-agent scheduling with simultaneous considerations of deteriorating jobs and learning effects has hardly been considered until now. In view of this, we consider a two-agent single-machine scheduling problem involving deteriorating jobs and learning effects simultaneously. In the proposed model, given a schedule, we assume that the actual processing time of a job of the first agent is a function of position-based learning while the actual processing time of a job of the second agent is a function of position-based deterioration. The objective is to minimize the total weighted completion time of the jobs of the first agent with the restriction that no tardy job is allowed for the second agent. We develop a branch-and-bound and several simulated annealing algorithms to solve the problem. Computational results show that the proposed algorithms are efficient in producing near-optimal solutions.  相似文献   

12.
In this paper, we consider single-machine scheduling problems with deteriorating jobs and resource allocation in a group technology environment. In the proposed model of this paper the actual processing time of a job depend on its starting time and the amount of resource allocated to it, and the actual setup time of a group depend on its starting time and the amount of resource allocated. Deterioration effect and two resource allocation functions are examined for minimizing the weighted sum of makespan and total resource cost. For the linear resource allocation function and the convex resource allocation function, we show that the problem remains polynomially solvable under certain conditions.  相似文献   

13.
Deteriorating jobs scheduling problems have been extensively studied in recent years. However, it is assumed that there is a common goal to minimize for all jobs in most of the research. In many management situations, multiple agents compete on the usage of a common processing resource. In this paper, we considered a single-machine scheduling problem with a linear deterioration assumption where the objective is to minimize the total weighted completion time of jobs from the first agent with the restriction that no tardy job is allowed for the second agent. We proposed a branch-and-bound algorithm and three heuristic algorithms to search for the optimal solution and near-optimal solutions, respectively. A computational experiment was conducted to evaluate the performance of the proposed algorithms.  相似文献   

14.
A due-date assignment problem with learning effect and deteriorating jobs   总被引:1,自引:0,他引:1  
In this paper we consider a single-machine scheduling problem with the effects of learning and deterioration. In this model, job processing times are defined by functions of their starting times and positions in the sequence. The problem is to determine an optimal combination of the due-date and schedule so as to minimize the sum of earliness, tardiness and due-date. We show that the problem remains polynomially solvable under the proposed model.  相似文献   

15.
In this paper we consider a single-machine common due-window assignment scheduling problem with learning effect and deteriorating jobs. In this model, job processing times are defined by functions of their starting times and positions in the sequence. The window location and size, along with the associated job schedule that minimizes a certain cost function, are to be determined. This function is made up of costs associated with the window location, window size, earliness and tardiness. We show that the problem remains polynomially solvable under the proposed model.  相似文献   

16.
加工时间恶化的两个成组加工排序问题   总被引:1,自引:0,他引:1  
This paper considers single-machine scheduling problems in group technology with the jobs‘ processing times being simple linear functions of their start times. The objective functions are the minimizing of makespan and total weighted completion time. Some optimal conditions and algorithms are given and the fact that the problem of total weighted completion times is NP-hard is proved.  相似文献   

17.
In this paper we consider the single-machine scheduling problems with job-position-based and sum-of-processing-times based processing times. The real processing time of a job is a function of its position and the total processing time of the jobs that are in front of it in the sequence. The objective is to minimize the makespan, and to minimize the mean finish time. We prove that some special cases are polynomially solvable under some restrictions of the parameters. In addition, for some another special cases of minimization of the mean finish time and the makespan, we show that an optimal schedule is V-shaped with respect to job normal processing times. Then, we propose a heuristic based on the V-shaped property, and show through a computational experiment that it performs efficiently.  相似文献   

18.
Although machine scheduling problems with learning and deteriorating effects consideration have received increasing attention in the recent years, most studies have seldom considered the two phenomena simultaneously. However, learning and deteriorating effects might co-exist in many realistic scheduling situations. Thus, in this article, a model which takes the effects of time-dependent learning and deterioration simultaneously is proposed and applied into some scheduling problems. Under the proposed model, the processing time of a job is determined by a function of its corresponding starting time and positional sequence in each machine. We show that some single machine and flowshop scheduling problems are polynomially solvable with the certain performance measures such as makespan, total completion time, and weighted completion time.  相似文献   

19.
This paper studies the parallel machines bi-criteria scheduling problem (PMBSP) in a deteriorating system. Sequencing and scheduling problems (SSP) have seldom considered the two phenomena concurrently. This paper discusses the parallel machines scheduling problem with the effects of machine and job deterioration. By the machine deterioration effect, we mean that each machine deteriorates at a different rate. This deterioration is considered in terms of cost which depends on the production rate, the machine’s operating characteristics and the kind of work done by each machine. Moreover, job processing times are increasing functions of their starting times and follow a simple linear deterioration. The objective functions are minimizing total tardiness and machine deteriorating cost. The problem of total tardiness on identical parallel machines is NP-hard, thus the problem with machine deteriorating cost as an additional term is also NP-hard. We propose the LP-metric method to show the importance of our proposed multi-objective problem. A metaheuristic algorithm is developed to locate optimal or near optimal solutions based on a Tabu search mechanism. Numerical examples are presented to show the efficiency of this model.  相似文献   

20.
Wang et al. (J Operat Res Soc 62: 1898–1902, 2011) studied the m identical parallel-machine and unrelated parallel-machine scheduling with a deteriorating maintenance activity to minimize the total completion time. They showed that each problem can be solved in O(n 2m+3) time, where n is the number of jobs. In this note, we discuss the unrelated parallel-machine setting and show that the problem can be optimally solved by a lower order algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号