首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
Li2MnO3-doped spinel LiMn2O4 composites were synthesized by sol-gel method to improve the electrochemical performance of LiMn2O4. The microstructures, morphologies and electrochemical performance of the obtained xLi2MnO3·(1-x)LiMn2O4 composites were characterized by X-ray diffraction(XRD), scan electron microscopy(SEM) and a galvanostatic charge-discharge process. It was found that both Li2MnO3 and LiMn2O4 components exist in xLi2MnO3·(1-x)LiMn2O4(02MnO3·0.7LiMn2O4 composite shows the optimized electrochemical performance, including discharge capacity and cycle stability. It was demonstrated that Li2MnO3-doped spinel LiMn2O4 cathode material can work at wide potential window with quite good capacity retention and considerably larger reversible capacity compared to single-phase LiMn2O4 component.  相似文献   

2.
磷酸铁锂(LiFePO_4)具有环境友好、价格便宜、安全性能好等优点,作为正极材料已经广泛应用于国内的电动车动力电池中;为了进一步提高电池的性能,需要对影响磷酸铁锂及同类材料(LiMPO_4 (LMP);M=Fe、Mn、Co、Ni及这些元素的混合)电化学性能的因素进行深入研究。本文从材料颗粒体相特征(相结构、掺杂、纳米化、缺陷和锂离子传输机制)、界面结构及在不同的电解质环境下的界面重构和电极结构与锂电池性能的构效关系等方面进行总结,系统化的阐述并总结了影响磷酸铁锂正极材料最新研究进展。  相似文献   

3.
The solid state formation of lithium manganese oxides has been studied from the thermal decomposition of mixtures Li2CO3–Mn3O4 with XLi (lithium cationic fraction)=0.33 (LiMn2O4), 0.50 (LiMnO2) and 0.66 (Li2MnO3). The analysis of the reactivity has been performed mainly by thermoanalytical (TG/DSC) and diffractometric (XRPD) techniques either on physical mixtures and on mixtures subjected to mechanical activation by high energy milling. At XLi=0.33, the cubic lithium manganese spinel oxide (LiMn2O4) forms in air. TG measurements showed that the reaction starts at a considerably lower temperature in the activated mixture. By variable temperature X-ray diffraction it has been assessed that, upon mechanical activation, LiMn2O4 forms directly and its formation is completed within 700 °C whereas, starting from a physical mixture, the formation goes through Mn2O3 and is complete only at 800 °C. At T>820 °C LiMn2O4 reversibly decomposes to LiMnO2 and Mn3O4 with an enthalpy of 30.05 kJ mol−1 of LiMn2O4. At XLi=0.50, by annealing under nitrogen flow for 6 h at 650 °C the activated mixture, the orthorhombic LiMnO2 is formed. Such a formation goes through a mixture of LiMnO2 and LiMn2O4. The enthalpy of LiMnO2 solid state formation from the activated mixture has been determined to be 57.4 kJ mol−1 of LiMnO2. At XLi=0.66 in air the mechanical activation considerably lowers the temperature within the monoclinic phase Li2MnO3 forms. Besides the reaction enthalpy could be determined as 40.13 kJ mol−1 of Li2MnO3. The reaction, when performed under nitrogen flow, goes through the formation of LiMnO2. Such a first stage of the reaction is affected by the temperature of reaction rather than by mechanical activation. The activation greatly enhances the second stage of the reaction leading from LiMnO2 to Li2MnO3.  相似文献   

4.
采用固相反应法制备了具有尖晶石结构的LiMn_2O_4/TiO_2系列催化剂,探讨了TiO_2、Li/TiO_2、Mn/TiO_2、LiMn_2O_4及LiMn_2O_4/TiO_2等不同组成催化剂的甲烷氧化偶联反应性能,采用XRD、XPS、CO_2-TPD和H_2-TPR等表征方法对该系列催化剂进行了分析。结果表明,具有尖晶石结构的LiMn_2O_4化合物具有较高的甲烷氧化偶联催化活性,在775℃、0.1MPa、7200mL/(h·g),CH_4∶O_2(体积比)为2.5的条件下,甲烷转化率可达25.8%,C2选择性可达43.2%。TiO_2的存在不仅进一步提高了甲烷转化率和C2选择性,还有效抑制了甲烷完全氧化形成CO_2的过程。负载8%LiMn_2O_4的LiMn_2O_4/TiO_2催化剂性能达到最优,此时甲烷转化率达到31.6%,C2选择性为52.4%,CO_2选择性降低到26.3%。考察了不同焙烧温度对催化剂活性的影响,850℃为LiMn_2O_4/TiO_2催化剂的最佳焙烧温度。  相似文献   

5.
脉冲激光沉积LiFePO4阴极薄膜材料及其电化学性能   总被引:5,自引:0,他引:5  
采用脉冲激光沉积结合高温退火的方法在不锈钢基片上制备了LiFePO4薄膜电极. XRD谱图显示, 经650 ℃退火制得的是具有橄榄石结构的LiFePO4薄膜. 充放电测试表明, LiFePO4薄膜具有3.45/3.40 V的充放电平台, 与LiFePO4粉体材料相当. 首次放电容量约为27 mAh•g-1, 充放电循环100次后容量衰减51%.  相似文献   

6.
采用高温固相反应法、Pechini合成方法和柠檬酸配位法,制备了系列锂锰复合氧化物LiMn2O4催化剂,应用于NH3-SCR反应,并与固相反应法合成的MnO2进行了比较。采用N2吸附-脱附、扫描电镜、X射线衍射、H2程序升温还原、NH3程序升温脱附、NO程序升温脱附和X射线光电子能谱对LiMn2O4催化剂进行表征。结果表明,引入Li有利于提高锰基催化剂的SCR活性和抗硫性。Pechini法制备LiMn2O4的NO转化率可在130~260℃达到90%以上;固相反应法制备LiMn2O4的NO转化率大于90%的温度为90~310℃;MnO2的温度窗口则仅为140~280℃。与MnO2相比,引入Li可形成LiMn2O4结构,因此,催化剂中更多的锰离子保持在相对较低的价态Mn3+,并调整表面活性氧含量;同时,Li的存在调变了LiMn2O4表面的酸位,从而减少高温下MnO2表面容易发生的NH3非选择性氧化,改善其催化NH3-SCR反应的温度窗口,也增强了抗硫性。  相似文献   

7.
通过溶胶-凝胶和高温固相掺杂反应可控合成了形貌均匀、结晶性好的尖晶石型LiMn1.9Al0.1O3.95F0.05正极材料,探究了Al部分取代Mn、F部分取代O后对结构的影响,测试并比较了电极材料的倍率性能和循环充放电性能. 结果表明,尖晶石型LiMn1.9Al0.1O3.95F0.05和LiMn2O4有同样的晶型,但电极较传统的LiMn2O4电极倍率稳定性有显著提高. 在连续混合(如0.1C、0.5C和1C)充放电150次后,LiMn1.9Al0.1O3.95F0.05电极的容量仍能保持90%以上.  相似文献   

8.
本文采用磷酸铁工艺路线制备碳包覆的磷酸铁锂(LiFePO4/C)复合正极材料,系统考察气流粉碎分级过程对LiFePO4/C正极材料及全电池性能的影响. 研究表明:分级前磷酸铁锂颗粒粒度较大,中值粒径为17.37μm,呈规整球形形貌,具有较高的振实密度和碳含量;分级后球形被打碎,振实减小. 全电池测试结果显示:分级过程对全电池的容量、交流内阻、直流内阻、功率密度的影响较小;但分级前电芯的低温放电容量保持率和550周的高温循环保持率分别60.1%和87.5%,明显优于分级后的49.5%和84.7%. 分级前碳层能均匀包覆在磷酸铁锂表面形成均匀导电网络,而分级过程将磷酸铁锂的碳层有一定的剥离和破坏导致性能下降.  相似文献   

9.
陈丽辉  吴秋晗  潘佩  宋子轩  王锋  丁瑜 《应用化学》2018,35(11):1384-1390
采用模板导向法和高温固相法制备尖晶石型八面体结构的LiMn2O4锂离子电池正极材料,研究了该材料的结构和电化学性能。 电化学性能研究表明,该电极材料具有良好的循环稳定性和倍率性能,在2.5~4.5 V电压范围,电流密度为100 mA/g时,首周充放电比容量分别为147和179 mA·h/g,循环50周后,其充放电比容量仍分别保持在180/181 mA·h/g。 优良的电化学性能可能归因于尖晶石LiMn2O4的形貌结构特征,该方法为制备锂离子电池正极材料提供了思路和依据。  相似文献   

10.
LiMn2O4 nano-wires with ideal size distribution were readily synthesized by flux method. Samples prepared conventionally were used as the comparison references to investigate the effect of flux. The structural, morphological and electrochemical properties of nano-sized materials were examined by powder X-ray diffraction(XRD) analysis, scanning electron microscopy(SEM) and charge-discharge cycling analysis. Results from galvanostatic charge-discharge analysis show that the samples prepared at 700℃ via flux method(FM-700) afford the highest initial discharge capacity of 125.5 mA·h/g between 3.0 to 4.3 V at a rate of 0.2 C. After 50 cycles, a cycling retention of 89.6% is evident. Overall, the LiMn2O4 nano-wires developed in this work seem to be promising cathode materials for lithium ion batteries suitable to different energy-saving settings.  相似文献   

11.
Spinel LiMn2O4 has already become an attractive cathode material for rechargeable lithium-ion battery. Compared with other layered compounds LiCoO2 and LiNiO2,LiMn2O4 offers several advantages:inexpensive, nontoxic, abundant and easy to prepare. These characteristics induce many researchers to study it to make it commercialized.  相似文献   

12.
作为用于可持续能源的有效能量存储装置,锂离子电池因具有优异的电化学性能而得到广泛研究,是非常有发展潜力的储能电池体系,其技术发展及应用的关键在于电极材料的研发。LiFePO_4作为锂离子电池正极材料之一,具有循环寿命长、能量密度大、充放电平稳、热稳定性良好、安全性好、重量轻和低毒性等优点,备受国内外专家的专注。然而,LiFePO_4正极材料的研究还存在一些技术瓶颈,由于其存在电导率相对较低、锂离子扩散系数小以及振实密度不高等问题,导致循环性能、低温特性和高倍率充放电性能等并不理想,因而制约着它的应用和发展。近几年研究工作者通过改进制备工艺以及进行相关改性研究,旨在逐步解决上述问题。本文简要综述了LiFePO_4正极材料的最新研究成果,就其结构特征、电化学反应机理、制备方法和改性进行了系统介绍。探讨了目前LiFePO_4正极材料面临的主要问题及可能的解决策略,并对其未来的研究方向和应用前景进行了展望。  相似文献   

13.
吴玥  刘兴泉  张峥  赵红远 《物理化学学报》2014,30(12):2283-2290
以氢氧化锂、乙酸锰、硝酸镁和钛酸丁酯为原料,以柠檬酸为螯合剂,采用溶胶-凝胶法制备了二价镁离子与四价钛离子等摩尔共掺杂的尖晶石型锂离子电池正极材料Li Mn1.9Mg0.05Ti0.05O4.采用热重分析(TGA),X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)和电化学性能测试(包括循环伏安(CV)和电化学交流阻抗谱(EIS)测试)对所得样品的结构、形貌及电化学性能进行了表征.结果表明:780°C下煅烧12 h得到了颗粒均匀细小的尖晶石型结构的Li Mn1.9Mg0.05Ti0.05O4材料,该材料具有良好的电化学性能,在室温下以0.5C倍率充放电,在4.35-3.30 V电位范围内放电比容量达到126.8 m Ah·g-1,循环50次后放电比容量仍为118.5m Ah·g-1,容量保持率为93.5%.在55°C高温下循环30次后的放电比容量为111.9 m Ah·g-1,容量保持率达到91.9%,远远高于未掺杂的Li Mn2O4的容量保存率.二价镁离子与四价钛离子等摩尔共掺杂Li Mn2O4,改善了尖晶石锰酸锂的电子导电和离子导电性能,使其倍率性能和高温性能都得到了明显的提高.  相似文献   

14.
采用湿法球磨法制备了锂离子电池混合正极材料LiNi 0.5Co 0.2Mn 0.3O2/LiFePO4 (NMC532/LFP). 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试和电化学阻抗谱测试(EIS)等方法研究对比了LiNi 0.5Co 0.2Mn 0.3O2(NMC532)和LiNi 0.5Co 0.2Mn 0.3O2/LiFePO4 (NMC532/LFP)的容量衰减机理,结果表明:循环50次和60℃高温存储后,NMC532/LFP的容量保持率分别为97.80%、86.48%,其循环和高温存储性能较好. 循环和高温存储后NMC532和NMC532/LFP的电荷传递阻抗Rct明显增大,但NMC532/LFP的Rct较小. NMC532和NMC532/LFP的I(003)/I(104)值都有所减小,但NMC532/LFP的I(003)/I(104)值比NMC532的大,即NMC532/LFP材料的阳离子混排现象有所改善. 循环后NMC532、NMC532/LFP颗粒没有出现明显的表面开裂和链接断裂现象,但NMC532颗粒有部分发生粉化. 高温储存后NMC532颗粒表面出现裂纹,且颗粒之间的链接断裂,NMC532/LFP颗粒表面出现轻微粉化. 材料结构规整度下降,阳离子混排程度加剧,电荷传递阻抗增大是NMC532和NMC532/LFP容量衰减的主要原因.  相似文献   

15.
分别采用水热、水热-包覆、球磨法制备了Fe_3O_4、聚酰亚胺(PI)改性的Fe_3O_4@PI和Fe_3O_4-PI催化剂用于费托合成反应,对比研究了PI改性及其含量变化对Fe基催化剂催化CO加氢产物分布的影响规律。结合XRD、SEM、TEM、H_2-TPR、COTPD、FT-IR、XPS、TG和接触角实验等手段对催化剂样品进行了表征。结果表明,Fe_3O_4、Fe_3O_4@PI和Fe_3O_4-PI样品均为球形颗粒; PI改性促进了Fe_3O_4的还原,亲水性增强。Fe_3O_4@PI样品中,PI均匀包覆于Fe_3O_4表面,具有较好的热稳定性;与Fe_3O_4、Fe_3O_4-PI相比,Fe_3O_4@PI样品CO吸附增强。在CO加氢反应中,与Fe_3O_4相比,PI改性的Fe_3O_4@PI和Fe_3O_4-PI样品催化活性下降,二次加氢能力受到抑制,烯烃选择性提高; Fe_3O_4@PI样品烯烃选择性增加明显,烯烷比(O/P)由改性前的0.50提高至2.15;适宜含量的PI改性促进C5+烃生成。  相似文献   

16.
以NiSO4和MnSO4为原料,在用共沉淀法经二次干燥制备锂离子电池正极材料LiNi0.5Mn1.5O4的前驱体时,加入水合肼进行还原处理.实验结果发现:经还原处理的前驱体制备正极材料LiNi0.5Mn1.5O4的充放电比容量远远高于同样条件下不经水合肼还原处理的前驱体制备的正极材料的充放电比容量,而且处理前驱体制备的正极材料在高倍率放电条件下电化学行为更好.粉末X射线衍射(XRD)和扫描电镜(SEM)测试结果表明,用还原剂水合肼处理的前驱体合成的样品为单一的尖晶石结构,晶粒呈规则的八面体形貌,没有杂质相,而未处理前驱体合成的样品则含有少量的杂质相.这种杂质相是在前驱体的制备过程中由于Mn(OH)2被O2氧化而形成难溶Na0.55Mn2O4.1.5H2O化合物,最终转变为Na0.7MnO2.05.  相似文献   

17.
In this work, we present a new design for a surface protective layer formed by a facile aqueous solution process in which a nano-architectured layer of LiFePO4 is grown on a Li-rich cathode material, Li1.2Mn0.54Ni0.13Co0.13O2. The coated samples are then calcined at 400 or 500℃ for 5 h. The sample after calcination at 400℃ demonstrates a high initial columbic efficiency of 91.9%, a large reversible capacity of 295.0 mAh·g-1 at 0.1 C (1 C=300 mA·g-1), and excellent cyclability with a capacity of 206.7 mAh·g-1after 100 cycles at 1 C. Meanwhile, voltage fading of the coated sample is effectively suppressed by protection offered by a LiFePO4 coating layer. These superior electrochemical performances are attributed to the coating layer, which not only protects the Li-rich cathode material from side reaction with the electrolyte and maintains the stability of the interface structure, but also provides excess reversible capacity.  相似文献   

18.
掺稀土的LiM0.02Mn1.98O4锂离子电池正极材料   总被引:11,自引:0,他引:11  
自1991年Ohzuku[1] 、 Tarascon[2]等成功地将LiMn2O4用于锂离子电池正极以来, 人们对尖晶石LiMn2O4的电化学性质进行了广泛的研究[3]. 尖晶石LiMn2O4的一个缺点是充放电过程中, 特别在较高温度(如50 ℃)下, 其容量下降明显. Zhou等[4]详细研究了该过程, 发现造成容量下降的主要原因是充电状况下正极LiMn2O4的溶解, 由于Jahn-Taller效应生成不稳定的两相结构以及电解液的分解等. 为了提高LiMn2O4的充放电循环稳定性, 人们除了优化合成条件和溶液组分外, 主要采用添加少量掺杂元素(M), 部分替代LiMn2O4中的Mn, 制得LiMxMn2-xO4, 以抑制溶解和Jahn-Taller效应引起的结构变化.  相似文献   

19.
Developing enzyme-free sensors with high sensitivity and selectivity for H2O2 and glucose is highly desirable for biological science.Especially,it is attractive to exploit noble-metal-free nanomaterials with large surface area and good conductivity as highly active and selective catalysts for molecular detection in enzyme-free sensors.Herein,we successfully fabricate hollow frameworks of Co3O4/N-doped carbon nanotubes(Co3O4/NCNTs)hybrids by the pyrolysis of metal-organic frameworks followed by calcination in the air.The as-prepared novel hollow Co3O4/NCNTs hybrids exhibit excellent electrochemical performance for H2O2 reduction in neutral solutions and glucose oxidation in alkaline solutions.As sensor electrode,the Co3O4/NCNTs show excellent non-enzymatic sensing ability towards H2O2 response with a sensitivity of 87.40μA(mmol/L)^-1 cm^-2,a linear range of 5.00μmol/L-11.00 mmol/L,and a detection limitation of 1μmol/L in H2O2 detection,and a good glucose detection performance with 5μmol/L.These excellent electrochemical performances endow the hollow Co3O4/NCNTs as promising alternative to enzymes in the biological applications.  相似文献   

20.
橄榄石结构的LiFePO4具有电压平台平稳、价格低廉、原料丰富和环境友好等优点,得到了人们的广泛关注. 然而,纯LiFePO4的离子和电子导电性较差,其大范围应用受限. 研究表明,对LiFePO4表面进行碳包覆可以有效提升其电化学性能. 结合国内外研究现状,本文综述了不同的碳包覆方法、碳源种类对LiFePO4电化学性能的影响,以及碳包覆提升LiFePO4正极材料电化学性能的作用机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号