首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins carry out the most important and difficult tasks in all living organisms. To do so, they must often interact specifically with other small and large molecules. This requires that they fold to a globular conformation with a unique active site that is used for the specific interaction. Consequently, protein folding can be regarded as the “secret of life”. Biochemists and chemists have a great interest in elucidating the mechanism by which proteins fold and in predicting the folded conformation and its stability given just the amino acid sequence. This challenge is sometimes called the “protein folding problem”. The ability to construct proteins differing in sequence by one or more amino acids and to analyze their three-dimensional structures by X-ray crystallography and NMR spectroscopy is a powerful tool for investigating the conformational stability and folding of proteins. Several proteins are now under intensive study by this approach. One of these is ribonuclease T1.  相似文献   

2.
Aoneng Cao 《物理化学学报》2020,36(1):1907002-0
蛋白质折叠问题被称为第二遗传密码,至今未破译;蛋白质序列的天书仍然是"句读之不知,惑之不解"。在最近工作的基础上,我们提出了蛋白质结构的"限域下最低能量结构片段"假说。这一假说指出,蛋白质中存在一些关键的长程强相互作用位点,这些位点相当于标点符号,将蛋白质序列的天书变成可读的句子(多肽片段)。这些片段的天然结构是在这些强长程相互作用位点限域下的能量最低状态。完整的蛋白质结构由这些"限域下最低能量结构片段"拼合而成,而蛋白质整体结构并不一定是全局性的能量最低状态。在蛋白质折叠过程中,局部片段的天然结构倾向性为强长程相互作用的形成提供主要基于焓效应的驱动力,而天然强长程相互作用的形成为局部片段的天然结构提供主要基于熵效应的稳定性。在蛋白质进化早期,可能存在一个"石器时代",即依附不同界面(比如岩石)的限域作用而稳定的多肽片段先进化出来,后由这些片段逐步进化(包括拼合)而成蛋白质。  相似文献   

3.
Only a vanishingly small proportion of the almost infinite number of possible proteins occur in nature. Can this remaining potential of structural and functional diversity be used in the construction of new proteins? Is a “second evolution” of proteins and enzymes about to occur? These questions have suddenly become of interest because the recombinant DNA technique allows the synthesis of any given amino acid sequence. Examples of enzyme models demonstrate clearly that the unusual catalytic properties of enzymes are associated with the presence of a specifically folded polypeptide chain which has a complex three-dimensional form. The critical hurdle in the path of artificial proteins is thus the design of amino acid sequences which are able to fold into tertiary structures. — Recent studies on the topology and the mechanism of folding have provided considerable insight into the occurrence of, and the rules governing the three-dimensional architecture of proteins. Secondary structures apparently play a key role in the folding process; helices and “β-structures” act as nucleation centers directing folding and account for the surprisingly small number of different folding topologies. The problem of secondary structure formation can be investigated directly by means of conformational studies on model peptides. Oligopeptides with tailormade physicochemical, structural and conformational properties can already be designed. The theoretical and experimental basis for the construction of polypeptides with stable tertiary structures is therefore established. The path to macromolecules with an immense variety of novel properties lays before us.  相似文献   

4.
5.
用"相对熵"作为优化函数,提出了一个有效快速的折叠预测优化算法.使用了非格点模型,预测只关心蛋白质主链的走向.其中只用到了蛋白质主链上的两两连续的Cα原子间的距离信息以及20种氨基酸的接触势的一个扩展形式.对几个真实蛋白质做了算法测试,预测的初始结构都为比较大的去折叠态,预测构象相对于它们天然结构的均方根偏差(RMSD)为5~7 A.从原理上讲,该方法是对能量优化的改进.  相似文献   

6.
折叠速率预测对阐明蛋白质折叠机理意义重大.本文收集了115条目前已知折叠速率的蛋白质样本(包括二态、多态和混态蛋白),为了较全面地表征蛋白质分子的一级结构信息,提取序列长度、氨基酸残基多尺度组分、成对残基k-space特征与基于残基物理化学性质的地统计学关联总共9357维特征.经改进的二元矩阵重排过滤器和多轮末尾淘汰非线性筛选,获得23个物理化学意义明确的保留特征,建立的非线性支持向量回归模型Jackknife交叉验证的相关系数R=0.95,优于文献报道及其他参比特征选择方法.支持向量回归解释体系表明折叠速率与保留描述符的非线性回归极显著,分析了各保留描述符对折叠速率的影响,结果表明蛋白质折叠速率与序列长度、中短程关联特征、三联体残基组份特征等密切相关.  相似文献   

7.
De novo and inverse folding predictions of protein structure and dynamics   总被引:6,自引:0,他引:6  
Summary In the last two years, the use of simplified models has facilitated major progress in the globular protein folding problem, viz., the prediction of the three-dimensional (3D) structure of a globular protein from its amino acid sequence. A number of groups have addressed the inverse folding problem where one examines the compatibility of a given sequence with a given (and already determined) structure. A comparison of extant inverse protein-folding algorithms is presented, and methodologies for identifying sequences likely to adopt identical folding topologies, even when they lack sequence homology, are described. Extension to produce structural templates or fingerprints from idealized structures is discussed, and for eight-membered β-barrel proteins, it is shown that idealized fingerprints constructed from simple topology diagrams can correctly identify sequences having the appropriate topology. Furthermore, this inverse folding algorithm is generalized to predict elements of supersecondary structure including β-hairpins, helical hairpins and α/β/α fragments. Then, we describe a very high coordination number lattice model that can predict the 3D structure of a number of globular proteins de novo; i.e. using just the amino acid sequence. Applications to sequences designed by DeGrado and co-workers [Biophys. J., 61 (1992) A265] predict folding intermediates, native states and relative stabilities in accord with experiment. The methodology has also been applied to the four-helix bundle designed by Richardson and co-workers [Science, 249 (1990) 884] and a redesigned monomeric version of a naturally occurring four-helix dimer, rop. Based on comparison to the rop dimer, the simulations predict conformations with rms values of 3–4 ? from native. Furthermore, the de novo algorithms can asses the stability of the folds predicted from the inverse algorithm, while the inverse folding algorithms can assess the quality of the de novo models. Thus, the synergism of the de novo and inverse folding algorthhm approaches provides a set of complementary tools that will facilitate further progress on the protein-folding problem.  相似文献   

8.
张竹青* 《物理化学学报》2012,28(10):2381-2389
蛋白质全新设计和折叠研究是从两个不同的方向来理解蛋白质序列-结构-功能关系这一结构生物学重要问题. 蛋白质全新设计取得的成功实例一定程度上检验了人们对蛋白质结构和相互作用理解的准确性, 但它们中多数所表现的不同于天然蛋白质的折叠动力学特征也表明, 要达到最终的功能化实现目标还面临着不少的挑战. 本文综述了蛋白质全新设计的发展过程及现状, 蛋白质折叠研究在实验、理论及模拟方面的研究进展, 以及全新设计蛋白质的折叠机制的研究现状. 阐述了深入了解全新设计蛋白质与天然蛋白质折叠机制的不同, 可以为进一步有效地合理化设计蛋白质提供有益的参考.  相似文献   

9.
RNA molecules participate in many important biological processes, and they need to fold into well-defined secondary and tertiary structures to realize their functions. Like the well-known protein folding problem, there is also an RNA folding problem. The folding problem includes two aspects: structure prediction and folding mechanism. Although the former has been widely studied, the latter is still not well understood. Here we present a deep reinforcement learning algorithms 2dRNA-Fold to study the fastest folding paths of RNA secondary structure. 2dRNA-Fold uses a neural network combined with Monte Carlo tree search to select residue pairing step by step according to a given RNA sequence until the final secondary structure is formed. We apply 2dRNA-Fold to several short RNA molecules and one longer RNA 1Y26 and find that their fastest folding paths show some interesting features. 2dRNA-Fold is further trained using a set of RNA molecules from the dataset bpRNA and is used to predict RNA secondary structure. Since in 2dRNA-Fold the scoring to determine next step is based on possible base pairings, the learned or predicted fastest folding path may not agree with the actual folding paths determined by free energy according to physical laws.  相似文献   

10.
An increasing number of proteins are found to contain a knot in their polypeptide chain. Although some studies have looked into the folding mechanism of knotted proteins, why and how these complex topologies form are still far from being fully answered. Moreover, no experimental information about how the knot moves during the protein‐folding process is available. Herein, by combining single‐molecule fluorescence resonance energy transfer (smFRET) experiments with molecular dynamics (MD) simulations, we performed a detailed study to characterize the knot in the denatured state of TrmD, a knotted tRNA (guanosine‐1) methyltransferase from Escherichia coli, as a model system. We found that the knot still existed in the unfolded state of TrmD, consistent with the results for two other knotted proteins, YibK and YbeA. More interestingly, both smFRET experiments and MD simulations revealed that the knot slid towards the C‐terminal during the unfolding process, which could be explained by the relatively strong interactions between the β‐sheet core at the N terminal of the native knot region. The size of the knot in the unfolded state is not larger than that in the native state. In addition, the knot slid in a “downhill” mode with simultaneous chain collapse in the denatured state.  相似文献   

11.
A protein can exist in multiple states under native conditions and those states with low populations are often critical to biological function and self‐assembly. To investigate the role of the minor states of an acyl carrier protein, NMR techniques were applied to determine the number of minor states and characterize their structures and kinetics. The acyl carrier protein from Micromonospora echinospora was found to exist in one major folded state (95.2 %), one unfolded state (4.1 %), and one intermediate state (0.7 %) under native conditions. The three states are in dynamic equilibrium and the intermediate state very likely adopts a native‐like structure and is an off‐pathway folding product. The intermediate state may mediate the formation of oligomers in vitro and play an important role in the recognition of partner enzymes in vivo.  相似文献   

12.
Protein fold recognition   总被引:4,自引:0,他引:4  
Summary An important, yet seemingly unattainable, goal in structural molecular biology is to be able to predict the native three-dimensional structure of a protein entirely from its amino acid sequence. Prediction methods based on rigorous energy calculations have not yet been successful, and best results have been obtained from homology modelling and statistical secondary structure prediction. Homology modelling is limited to cases where significant sequence similarity is shared between a protein of known structure and the unknown. Secondary structure prediction methods are not only unreliable, but also do not offer any obvious route to the full tertiary structure. Recently, methods have been developed whereby entire protein folds are recognized from sequence, even where little or no sequence similarity is shared between the proteins under consideration. In this paper we review the current methods, including our own, and in particular offer a historical background to their development. In addition, we also discuss the future of these methods and outline the developments under investigation in our laboratory.  相似文献   

13.
The role of the small exterior hydrophobic cluster (SEHC) in the strand region of the N‐terminal β‐hairpin of ubiquitin on the structural stability and the folding/unfolding kinetics of the protein have been examined. We introduce a Phe→Ala substitution at residue 4 in the strand region of the N‐terminal β‐hairpin of the ubiquitin. A peptide with the same amino acid sequence as the first 21 residues of the mutated ubiquitin has also been synthesized. The F4A mutation unfolds the hairpin structure of the peptide segment without disruption of the turn. The same mutation does not seem to affect the overall structure, but the stability of the mutated full‐length protein decreases by approx. 2 kcal/mol. Kinetically, the entire hairpin structure is implicated in the transition state during folding of the wild type protein. The rate of refolding is retarded by the F4A mutation in ~80% of the protein molecules. The F4A substitution also increases the unfolding rate of the protein by 10 fold. Thus the hydrophobic side‐chain of Phe‐4 not only contributes to the stability of the hairpin, but also to the stability of the entire protein by forming a cluster together with the hydrophobic residues on the C‐terminal strand.  相似文献   

14.
    
Folding dynamics and energy landscape picture of protein conformations of HP-36 andβ-amyloid (Aβ) are investigated by extensive Brownian dynamics simulations, where the inter amino acid interactions are given by a minimalistic model (MM) we recently introduced [J. Chem. Phys. 118 4733 (2003)]. In this model, a protein is constructed by taking two atoms for each amino acid. One atom represents the backbone Cαs atom, while the other mimics the whole side chain residue. Sizes and interactions of the side residues are all different and specific to a particular amino acid. The effect of water-mediated folding is mapped into the MM by suitable choice of interaction parameters of the side residues obtained from the amino acid hydropathy scale. A new non-local helix potential is incorporated to generate helices at the appropriate positions in a protein. Simulations have been done by equilibrating the protein at high temperature followed by a sudden quench. The subsequent folding is monitored to observe the dynamics of topological contacts (N topo ), relative contact order parameter (RCO), and the root mean square deviation (RMSD) from the real-protein native structure. The folded structures of different model proteins (HP-36 and Aβ) resemble their respective real native state rather well. The dynamics of folding showsmultistage decay, with an initial hydrophobic collapse followed by a long plateau. Analysis ofN topo and RCO correlates the late stage folding with rearrangement of the side chain residues, particularly those far apart in the sequence. The long plateau also signifies large entropic free energy barrier near the native state, as predicted from theories of protein folding. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   

15.
The funneled energy landscape theory implies that protein structures are minimally frustrated. Yet, because of the divergent demands between folding and function, regions of frustrated patterns are present at the active site of proteins. To understand the effects of such local frustration in dictating the energy landscape of proteins, here we compare the folding mechanisms of the two alternative spliced forms of a PDZ domain (PDZ2 and PDZ2as) that share a nearly identical sequence and structure, while displaying different frustration patterns. The analysis, based on the kinetic characterization of a large number of site‐directed mutants, reveals that although the late stages for folding are very robust and biased by native topology, the early stages are more malleable and dominated by local frustration. The results are briefly discussed in the context of the energy‐landscape theory.  相似文献   

16.
The mechanism of protein folding (represented schematically below) is one of the most fascinating problems in the field of chemical reactions. This review presents the progess made recently in understanding key elements of this reaction and describes a solution to the often quoted Levinthal Paradox.  相似文献   

17.
Protein disulfide isomerase (PDI) can assist immature proteins to correctly fold by controlling cysteinyl disulfide (SS)‐relating reactions (i. e., SS‐formation, SS‐cleavage, and SS‐isomerization). PDI controls protein quality by suppressing protein aggregation, as well as functions as an oxidative folding catalyst. Following the amino acid sequence of the active center in PDI, basic amino acid conjugates of 1,2‐diselenan‐4‐amine ( 1 ), which show oxidoreductase‐ and isomerase‐like activities for SS‐relating reactions, were designed as a novel PDI model compound. By conjugating the amino acids, the diselenide reduction potential of compound 1 was significantly increased, causing improvement of the catalytic activities for all SS‐relating reactions. Furthermore, these compounds, especially histidine‐conjugated one, remarkably suppressed protein aggregation even at low concertation (0.3 mM~). Thus, it was demonstrated that the conjugation of basic amino acids into 1 simultaneously achieves the enhancement of the redox reactivity and the capability to suppress protein aggregation.  相似文献   

18.
Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed high‐power relaxation dispersion experiments allow the detection of motions up to a one‐digit microsecond timescale. These experiments showed that side chains in the hydrophobic core as well as at protein–protein interaction surfaces of both ubiquitin and the third immunoglobulin binding domain of protein G move on the microsecond timescale. Both proteins exhibit plasticity to this microsecond motion through redistribution of the populations of their side‐chain rotamers, which interconvert on the picosecond to nanosecond timescale, making it likely that this “population shuffling” process is a general mechanism.  相似文献   

19.
Short peptides that fold into β‐hairpins are ideal model systems for investigating the mechanism of protein folding because their folding process shows dynamics typical of proteins. We performed folding, unfolding, and refolding molecular dynamics simulations (total of 2.7 μs) of the 10‐residue β‐hairpin peptide chignolin, which is the smallest β‐hairpin structure known to be stable in solution. Our results revealed the folding mechanism of chignolin, which comprises three steps. First, the folding begins with hydrophobic assembly. It brings the main chain together; subsequently, a nascent turn structure is formed. The second step is the conversion of the nascent turn into a tight turn structure along with interconversion of the hydrophobic packing and interstrand hydrogen bonds. Finally, the formation of the hydrogen‐bond network and the complete hydrophobic core as well as the arrangement of side‐chain–side‐chain interactions occur at approximately the same time. This three‐step mechanism appropriately interprets the folding process as involving a combination of previous inconsistent explanations of the folding mechanism of the β‐hairpin, that the first event of the folding is formation of hydrogen bonds and the second is that of the hydrophobic core, or vice versa.  相似文献   

20.
In the last few decades, development of novel experimental techniques, such as new types of disulfide (SS)-forming reagents and genetic and chemical technologies for synthesizing designed artificial proteins, is opening a new realm of the oxidative folding study where peptides and proteins can be folded under physiologically more relevant conditions. In this review, after a brief overview of the historical and physicochemical background of oxidative protein folding study, recently revealed folding pathways of several representative peptides and proteins are summarized, including those having two, three, or four SS bonds in the native state, as well as those with odd Cys residues or consisting of two peptide chains. Comparison of the updated pathways with those reported in the early years has revealed the flexible nature of the protein folding pathways. The significantly different pathways characterized for hen-egg white lysozyme and bovine milk α-lactalbumin, which belong to the same protein superfamily, suggest that the information of protein folding pathways, not only the native folded structure, is encoded in the amino acid sequence. The application of the flexible pathways of peptides and proteins to the engineering of folded three-dimensional structures is an interesting and important issue in the new realm of the current oxidative protein folding study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号