首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density values for dilute aqueous solutions of five cyclic ethers (oxolane, 1,3-dioxolane, oxane, 1,4-dioxane, and 1,3,5-trioxane) are presented together with partial molar volumes at infinite dilution calculated from the experimental results. The measurements were performed at temperatures from (298 up to 573) K. Due to thermal decomposition, the upper temperature limit was lower for 1,3-dioxolane (448 K) and 1,3,5-trioxane (498 K). Experimental pressures were close to the saturated vapour pressure of water, and (15 and 30) MPa. The results were obtained using a high-temperature high-pressure flow vibrating-tube densimeter. Experimental standard partial molar volumes were correlated as a function of temperature and pressure using an empirical polynomial function and the semi-theoretical SOCW equation of state. Contributions of the group contribution method proposed previously were also evaluated and analyzed.  相似文献   

2.
Studies on the composition of copolymers obtained by the radiation-induced solid-state postpolymerization of trioxane with 1,3-dioxolane have been carried out. Gas-chromatographic analysis of the reaction mixtures showed that most of the 1,3-dioxolane disappears rapidly from the reaction system in an early stage of polymerization, and that the fraction of ethylene oxide units in the copolymer chain [E] decreases markedly with increasing polymer yield. This finding was confirmed by NMR spectra of the copolymer. DSC thermograms of the copolymer indicated that the relationship between the melting point and the average composition of copolymers prepared in this study differed from that found for copolymers in which comonomer units are distributed statistically in the polymer chain. It was suggested that the copolymer formed by the radiation-induced solid-state postpolymerization of trioxane–1,3-dioxolane is characterized by a heterogeneous distribution of ethylene oxide units in the copolymer chain. It was also found that, in the radiation-induced solid-state postpolymerization of trioxane–1,3-dioxolane, the amount of tetraoxane formation increased linearly with increasing polymer yield. Although it is extremely small compared with that obtained in solution polymerization, it is slightly larger in the trioxane–1,3-dioxolane system than in the trioxane system.  相似文献   

3.
Methoxymethylstyrene (MSt), (2,2-dimethyl-1,3-dioxolan-4-yl)methoxymethylstyrene (MMSt), and (2-ethyl-2-methyl-1,3-dioxolan-4-yl)methoxymethylstyrene (EMSt) were synthesized and homopolymerized and copolymerized. The photochemical behavior of resultant homopolymers and copolymers with methyl methacrylate (MMA) and styrene (St) were investigated. The infrared (IR) and ultraviolet (UV) spectra of poly(MSt) showed that new bands ascribed to methyl benzoate residue increase rapidly with irrdiation time in air, but no detectable changes are observed in vacuum. The solubility measurements of poly(MSt) indicate that the main factor in crosslinking is the direct coupling of the benzyl radical generated by UV irradiation, which was confirmed by photopolymerization of MMA by means of benzyl methyl ether. It was also found that copolymers of MMSt or EMSt with MMA or St are easily crosslinked by UV irradiation. From the results of solubility measurements of these copolymers irradiated both in air and in vaccum, it was concluded that not only the 1,3-dioxolane structure but also the benzyl methyl ether structure takes part in photocrosslinking, as we expected.  相似文献   

4.
The living cationic polymerization of isobutyl vinyl ether (IBVE) was investigated in the presence of various cyclic and acyclic ethers with 1-(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3, 1 ]/EtAlCl2 initiating system in hexane at 0°C. In particular, the effect of the basicity and steric hindrance of the ethers on the living nature and the polymerization rate was studied. The polymerization in the presence of a wide variety of cyclic ethers [tetrahydrofuran (THF), tetrahydropyran (THP), oxepane, 1,4-dioxane] and cyclic formals (1,3-dioxolane, 1,3-dioxane) gave living polymers with a very narrow molecular weight distribution (MWD) (M?ω/M?n ≤ 1.1). On the other hand, propylene oxide and oxetane additives resulted in no polymerization, whereas 1,3,5-trioxane gave the nonliving polymer with a broader MWD. The polymerization rates were dependent on the number of oxygen and ring sizes, which were related to the basicity and the steric hindrance. The order of the apparent polymerization rates in the presence of cyclic ether and formal additives was as follows: nonadditive ~ 1,3,5-trioxane ? 1,3-dioxane > 1,3-dioxolane ? 1,4-dioxane ? THP > oxepane ? THF ? oxetane, propylene oxide ? 0. The polymerization in the presence of the cyclic formals was much faster than that of the cyclic ethers: for example, the apparent propagation rate constant k in the presence of 1,3-dioxolane was 103 times larger than that in the presence of THF. Another series of experiments showed that acyclic ethers with oxyethylene units were effective as additives for the living polymerization with 1 /EtAlCl2 initiating system in hexane at 0°C. The polymers obtained in the presence of ethylene glycol diethyl ether and diethylene glycol diethyle ether had very narrow molecular weight distribution (M?ω/M?n ≤ 1.1), and the M?n was directly proportional to the monomer conversion. The polymerization behavior was quite different in the polymerization rates and the MWD of the obtained polymers from that in the presence of diethyl ether. These results suggested the polydentate-type interaction or the alternate interaction of two or three ether oxygens in oxyethylene units with the propagating carbocation, to permit the living polymerization of IBVE. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
The terpolymerization of carbon monoxide, aziridines, and cyclic ethers was carried out by γ-irradiation. A partially crystalline solid copolymer was obtained. The infrared spectrum of the copolymer obtained indicated characteristic peaks due to the secondary amide and ester groups. The results of elementry analysis, infrared spectra, and x-ray diffraction of the copolymer showed that terpolymerization of carbon monoxide, aziridine, and cyclic ether took place by γ-irradiation. 2-Vinyl-1,3-dioxolane was polymerized in the system of carbon monoxide and ethylenimine to give a solid polymer. The infrared spectrum showed characteristics of the secondary amide and dioxolane ring, while no absorption due to carbonyl group of ester was observed. The infrared spectra and results of elementary analysis confirmed that the terpolymerization of carbon monoxide–ethylenimine–2-vinyl-1,3-dioxolane occurred.  相似文献   

6.
Perfluoro(5-methylene-2,2-dimethyl-1,3-dioxolane) (1) was synthesized by utilizing a direct fluorination reaction. Compound 1 was an entirely novel monomer with difluoromethylene at position 5 on the dioxolane ring as an unprecedented polymerization site. It successfully polymerized with tetrafluoroethylene to afford copolymers, which had Tg values in the range of 60-90 °C. The content of monomer 1 in the obtained polymers was less than 20 mol%, which seemed insufficient for giving various unique properties to polymers. However, each polymer was expected to be a superior material because of their advanced thermal stability. Comparison with copolymers of 2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole and tetrafluoroethylene is also discussed.  相似文献   

7.
The synthesis and structure determinations of (2,2-dimethyl-1,3-dioxolan-4-yl)-methyl acrylate, 4-(2,2-dimethyl-1,3-dioxolan-4-yl)methyl itaconate, and [(2,2-dimethyl-1,3-dioxolan-4-yl)methyl] methyl fumarate are described. Reactivity ratios in the copolymerization of these monomers with other comonomers are reported and the Alfrey-Price Q and e values calculated. The post-polymerization study of the effects of ultraviolet light and heat on these polymers and copolymers is presented. The 1,3-dioxolane group when appended to the polymer chain performs as an internal ultraviolet sensitizer. A mechanism is offered to explain the crosslinking behavior of these polymers when treated with ultraviolet light.  相似文献   

8.
The catalytic reduction of acetophenone, methyl α-acetamidocinnamate, and dimethyl itaconate with alcohol-modified sodium borohydride was studied in the presence of complexes CoCl2·L2 (L2 are chiral C 2-symmetric diamines: (4S,5S)-2,2-dimethyl-4,5-bis(aminomethyl)-1,3-dioxolane, (4S, 5S)-2,2-dimethyl-4,5-bis(methylaminomethyl)-1,3-dioxolane, (4S, 5S)-2,2-dimethyl-4,5-bis(dimethylaminomethyl)-1,3-dioxolane, and (4S, 5S)-2,2-dimethyl-4,5-bis(diphenylaminomethyl)-1,3-dioxolane). The maximum enantiomeric excess of (S)-1-phenylethanol was 24%, that of dimethyl α-methylsuccinate was 38%.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 342–347, February, 2005.  相似文献   

9.
A new method is introduced to determine the degree of partitioning of noncrystallizable comonomer units (B units) between the two phases of a semicrystalline random copolymer. The method is based on the comparison of the intensities of small-angle neutron and x-ray scattering (SANS and SAXS, respectively). By this technique two quantities can be evaluated: the difference Δρ of the mass densities between the crystalline and the disordered regions, and the concentration fluctuations of the B units in the two phases. It is found that SANS is very sensitive to the presence of small amounts of B units if their scattering length is sufficiently different from that of the A units. This will be the case for copolymers with B units, in which a hydrogen is substituted by another atom. But in addition it can also be achieved generally by deuteration of the comonomer units. So a wide range of copolymer systems can be studied by this method. The capability of the method was proved by measurements on chlorinated polyethylene and on 1,3,5-trioxane–1,3-dioxolane copolymers. Both copolymers are distinguished by a random distribution of the co-units. The results show that even at relatively low concentrations xB of the comonomer units a remarkable fraction of the B units is incorporated into the crystalline A phase and that this fraction rises if xB is increased.  相似文献   

10.
Trioxane–1,3-dioxolane copolymers of high molecular weights and good thermal stability are obtained with high yields by a crystallization-polymerization method. The feed consists of concentrated solutions of trioxane in cyclohexane in the presence of dissolved 1,3-dioxolane. The 1,3-dioxolane/trioxane molar ratio in the feed lies in the range 2 to 10%. The results are compared with those obtained from isothermal copolymerizations.  相似文献   

11.
Freezing temperatures of dilute aqueous solutions of ethyl acetate and mixtures with myo-inositol, D-mannitol, formamide, 1,3,5-trioxane, 1,4-dioxane, acetamide, hexamethylenetetramine, and methyl formate have been measured. In addition, freezing temperatures of dilute aqueous solutions of methyl formate and mixtures with the above solutes have been measured. From these data, the pairwise molecular Gibbs energies of interaction between the molecules were calculated. Using the additivity principle, the pairwise functional group Gibbs energies of interaction were calculated for ester group interactions with a variety of other functional groups.  相似文献   

12.
Chiral azacrown ethers were obtained by the condensation of (4S,5S)-4,5-ditosyl-oxymethyl-2,2-dimethyl-1,3-dioxolane with 6-benzyl-3,9-dioxa-6-azaundecane-1,11-diol. Their debenzylation and deacetalization were realized. The enantiomeric selectivity in the complex formation between the obtained crown ethers and the hydrochlorides of L- and D-valine methyl esters was determined by a potentiometric method. The chiral azacrown ethers exhibit higher enantioselectivity than their oxygen analogs.See [1] for Communication 33.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 687–691, May, 1988.  相似文献   

13.
14.
15.
Styrene (St) and methyl methacrylate (MMA) were photopolymerized in the presence of poly-2-vinyl-1,3-dioxolane (PVDO), poly-2-vinyl-4-hydroxymethyl-1,3-dioxolane (PVHDO), or the terpolymer of vinyl formal/vinyl acetate/vinyl alcohol (PVFAcA) at 30 or 40°C. The ability to accelerate the photopolymerization increased in the order PVFAcA < PVHDO < PVDO; the ability of pendent cyclic acetal was larger than that of cyclic acetals which are not pendent. Moreover, the promoting ability per cyclic acetal increased with the increase in the number of cyclic acetal cyclic acetal group in the molecule.  相似文献   

16.
In order to assess the effect of the methylol group at the 4-position of 1,3-dioxolane on polymerization, the photopolymerization of 2-vinyl-4-hydroxymethyl-1,3-dioxolane (VHDO) was carried out in benzene at 40°C. The reaction scheme of VHDO was considered to be the same as that of 2-vinyl-1,3-dioxolane (VDO). The rate of polymerization and the molecular weight of polymer were small because of the degradative chain transfer by allylidene group. Moreover, the rate of polymerization of VHDO was greater than that of VDO, whereas the molecular weight of polymer of VHDO was less than that of VDO.  相似文献   

17.
Spontaneous copolymerization of cyclic ketene acetal, 2-methylene-4-phenyl-1,3-dioxolane ( I ) with common electrophilic vinyl monomers, such as methyl α-cyanoacrylate (MCA), acrylonitrile (AN), and methyl methacrylate (MMA) were investigated to further explore zwitterion polymerization method with cyclic ketene acetals. In the reaction of I with MCA and AN, spontaneous copolymerization took place at ambient temperature. The copolymers of I with MCA gave low molecular weight polymers, but copolymers obtained with I and AN were high molecular weight polymers. In the reaction of I and MMA, high molecular weight copolymer was obtained only at temperatures above 80°C. Thus, obtained polymers were not the alternating copolymers and possessed high I content in all the cases. From the above results, macrozwitterionic mechanism was suggested as discussed.  相似文献   

18.
The relationship between the relative reactivities of ten cyclic ketene acetals and their structures was determined via cationic copolymerizations of eight different monomer pairs. Thus, 2-methylene-1,3-dioxolane (1) was copolymerized with 2-methylene-4-methyl-1,3-dioxolane (2), 2-methylene-4,5-dimethyl-1,3-dioxolane (3), 2-methylene-4,4,5,5-tetramethyl-1,3-dioxolane (4), 2-methylene-4-phenyl-1,3-dioxolane (5), and 2-methylene-4-(t-butyl)-1,3-dioxolane (6). Also 2-methylene-1,3-dioxane (7) was copolymerized with 2-methylene-4-methyl-1,3-dioxane (8), 2-methylene-4,4,6-trimethyl-1,3-dioxane (9), and 2-methylene-4-isopropyl-5,5-dimethyl-1,3-dioxane (10). The relative reactivities of these monomers are: 3 > 5 > 4 > 2 > 1 > 6; and 10 > 9 > 8 > 7. In spite of steric demands, substituents at the 4- or 5-positions in 2-methylene-1,3-dioxolane and substituents at the 4- or 6-positions in 2-methylene-1,3-dioxane serve to increase the copolymerization reactivity. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2841–2852, 1999  相似文献   

19.
The radiation-induced postpolymerization of trioxane with 1,3-dioxolane has been investigated. Trioxane and 1,3-dioxolane were carefully purified in a rigorously dry, high-vacuum system. In the present study it was found that trioxane can be easily copolymerized with 1,3-dioxolane to give a copolymer having high molecular weight and excellent thermal stability. Typically, the isothermal weight loss after heating for 60 minutes under nitrogen at 222°C was 3.5% for a copolymer of trioxane and 1.0 wt-%1,3-dioxolane preirradiated with a dose of 1.0 × 105 Rad. The thermal stability of the copolymer was scarcely affected by the polymerization temperature and time, although it decreased slightly with increasing preirradiation dose. The dependences of the yield and inherent viscosity of the polymer on the preirradiation dosage, polymerization temperature and time were quite similar to those found for the homopolymerization of trioxane. The results were analyzed by using the kinetic scheme previously reported, and it was found that no chain transfer reaction occurs in this system. These results are discussed in comparison with those of homopolymerization reported previously.  相似文献   

20.
The enthalpies of dilute aqueous solutions of tetrahydropyran, 1,3-dioxane, 1,4-dioxane, 1,2,5-trioxane, and an equimolal mixture of tetrahydropyran and 1,3,5-trioxane were measured at 25°C and at molalities from about 0.1 to 1.0 mol kg1. The freezing points of the same aqueous solutions (except for 1,3-dioxane) were measured over a similar molality range. The results were used to calculate the enthalpies and Gibbs free energies of the pair-wise interactions of the above solutes in dilute aqueous solutions at 25°C. From these results, the additivity principle proposed by Savage and Wood was used to get the Gibbs free energy and enthalpies of interaction for the ether-ether and ether-methylene groups. Because of the limited number of measurements, the interaction parameters were not determined with great precision. Nevertheless, the standard errors for the predicted enthalpies and Gibbs free energies are quite reasonable. The signs and magnitudes are similiar to those determined for other polar groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号