首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
Summary Five-coordinate bis(Se-benzeneseleninato)tris(ethylenediamine)nickel(II) complexes are obtained by reaction of the Ni(H2O)2(XC6H4SeO2)2 complexes (X = H,p-Cl,m-Cl,m-Br orp-Me) with ethylenediamine. All the diaquo complexes react with three moles of ethylenediamine to form Se-seleninato derivatives. The compounds are characterized on the basis of far i.r. and near i.r. spectroscopy, electronic spectra and magnetochemical investigations. The most attainable geometry is the square pyramidal, probably slightly distorted; tentative assignments for the electronic spectra are proposed. Conductivity data indicate that these new complexes are nonelectrolytes; both areneseleninato and ethylenediamine behave as monodentate ligands. The magnetic moments show that all the complexes are of high-spin type, the values lying within the ranges observed for other high-spin five-coordinate nickel(II) complexes.  相似文献   

2.
Complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with diacetyl benzaldehyde oxalic acid dihydrazone (dbodh), CH3COC(CH3)=NNHCOCONHN=CHC6H5 and diacetyl benzaldehyde malonic acid dihydrazone (dbmdh), CH3COC(CH3)=NNHCOCH2CONHN=CHC6H5 of general composition [M(dbodh)Cl]Cl and [M(dbmdh)Cl]Cl were synthesized and characterized by microanalyses, molar conductance, magnetic susceptibility, UV–Vis, ESR and IR spectra and X-ray diffraction studies. The complexes are 1 : 1 electrolytes in DMF and are insoluble in water and common organic solvents. The dbodh and dbmdh are neutral tridentate ligands in most complexes and coordinate via one >C=O and two >C=N–groups. In Cu(II) complexes the ligands are pentadentate coordinating through three >C=O and two >C=N–groups. The magnetic moment values and UV–Vis spectra suggest square-planar geometry for Co(II) and Ni(II) complexes and distorted octahedron for both Cu(II) complexes. The ESR spectra of Cu(II) complexes show well-defined copper hyperfine lines in DMSO solution at 120 K and exhibit d x 2 ?y 2 as the ground state. The X-ray diffraction parameters for [Ni(dbodh)Cl]Cl and [Co(dbmdh)Cl]Cl correspond to a tetragonal crystal lattice. The complexes show significant antifungal activity against Alternaria sp., Curvularia sp. and Colletotrichum sp. and fair antibacterial activity against Bacillus subtilis and Pseudomonas fluorescence.  相似文献   

3.
Solid complexes of lighter lanthanide nitrates with N,N′-dinaphthyl-N,N′-diphenyl-3,6-dioxaoctanediamide (DDD), Ln(NO3)3(DDD) (Ln = La---Nd, Sm) have been prepared in non-aqueous media. These complexes have been characterized by elemental analysis, conductivity measurements, IR spectra, electronic spectra and TG-DTA techniques. In all the complexes, DDD and NO3 are coordinated to the lanthanide ions as tetradentate and bidentate ligands, respectively. The differences in the IR and electronic spectra between these complexes and lanthanide nitrate complexes with N,N,N′,N′-tetraphenyl-3,6-dioxaoctanediamide (TDD) are discussed.  相似文献   

4.
We investigate surface-enhanced Raman scattering (SERS) spectra of pyridine–Agn (n = 2–8) complexes by density functional theory (DFT) and time-dependent DFT (TDDFT) methods. In simulated normal Raman scattering (NRS) spectra, profiles of pyridine–Agn (n = 2–8) complexes are analogical with that of isolated pyridine. Nevertheless, calculated pre-SERS spectra are strongly dependent on electronic transition states of new complexes. Wavelengths at 335 nm, 394.8 nm, 316.9 nm and 342.6 nm, which are nearly resonant with pure charge transfer excitation states, are adopted as incident light when simulating pre-SERS spectra for pyridine–Agn (n = 2–8) complexes, respectively. We obtain enhancement factors from 103 to 105 in pre-SERS spectra compared with corresponding NRS spectra. The obvious increase in Raman intensities mainly result from charge transfer resonance Raman enhancement. A charge difference densities (CDDs) methodology is adopted in describing chemical enhancement mechanism. This methodology aims at visualizing charge transfer from Agn (n = 2–8) clusters to pyridine on resonant electronic transition, which is one of the most direct evidences for chemical enhancement mechanism.  相似文献   

5.
The tetranuclear Cu4OBrnCl(6-n)L4 complexes, where L = 3-methylpyridine (3-Mepy), 4-methylpyridine (4-Mepy) and n=0–6 with trigonal bipyramidal coordination of copper(II) were prepared and their infrared and electronic absorption spectra as well as cyclic voltammograms in nitromethane solutions were measured. The polyhedra in Cu4OBrnCl(6−n) (3-Mepy)4 molecules are less distorted comparing with those of 4-Mepy analogues as indicated by infrared Cu4O absorptions, far infrared Cu—Br, Cu—Cl, and Cu—N absorptions, d—d bands in electronic spectra and potentials, measured by cyclic voltammetry. The 3-Mepy complexes exhibit strong single infrared Cu4O absorptions, while for related 4-Mepy complexes doubly split Cu4O bands were observed. Two strongly overlapped d—d bands in electronic absorption spectra of the 3-and 4-Mepy complexes in nitromethane were resolved by Gaussian fitting. The 4-Mepy ligand produces slightly stronger ligand field than its 3-Mepy analogue. The maxima of high-energy d—d bands are in a linear correlation with the number of bromide ligands. The correlations for corresponding low-energy bands are considerably deviated from linearity. The halfwave potentials of the complexes in nitromethane correlate with both the number of bromides and the data of electronic absorption spectra suggesting that the reducing electron at the electrode process enters the half-filled d z 2 orbital of the copper(II) atom. The origin of a difference between the 3-and 4-Mepy complexes in their spectral and electrochemical properties is also discussed.  相似文献   

6.
The homoleptic complexes ZnII(4′‐(2‐(5‐R‐thienyl))‐terpyridine)2(ClO4)2 [R = hydrogen ( 1 ), bromo ( 2 ), methyl ( 3 ), and methoxy ( 4 )] were prepared. Their structures were determined by single‐crystal X‐ray diffraction analyses, and further characterized by high resolution mass, infrared spectra (IR), and elemental analyses. Single crystal X‐ray diffraction analysis showed that ZnII ions in the complexes are both six‐coordinate with N6 coordination sphere, displaying distorted octahedral arrangements. The absorption and emission spectra of the homoleptic ZnII complexes were investigated and compared to those of the parent complex ZnII(4′‐(2‐thienyl))‐terpyridine)2(ClO4)2. The UV/Vis absorption spectra showed that the complexes all exhibit strong absorption component in UV region, moreover, complex 4 has an absorption component in the visible region. Thus, the photocatalytic activities of the complexes in degradation of organic dyes were investigated under UV and visible irradiation.  相似文献   

7.
The complexes of pyridine-2-aldoxime (HPOX) and 6-methylpyridine-2-aldoxime (HMPX) with iron (II) thiocyanate of the type [Fe(L)(NCS)2] (L=HPOX and HMPX) have been prepared and characterized. A study of X-ray, magnetic, vibrational spectra (conventional and far-infrared), electronic spectra andMössbauer spectra has indicated that these complexes have polymeric, pseudo octahedral, coordination geometry with linear bridging thiocyanate ligands. The electronic spectra of mono complexes show a larger, low symmetry, ligand field than that present in [Fe(L)2(NCS)2] complexes. UnperturbedMössbauer spectra show a large quadrupole splitting, E Q, and smaller isomer shift values in these iron (II) thiocyanate complexes. The magnetically perturbedMössbauer spectra of these iron(II) thiocyanate complexes at room temperature show that the principal component of the electric field gradient tensor is positive and corresponds to ad xy (5B2) ground state.With 2 Figures  相似文献   

8.
合成了两个4, 5-二氮芴-9-酮Cu(II)、Co(II)的多核配合物[Cu2(CH3COO)4(H2O) 2]·2dafo 1 和 [(μ2-O)2-Co3(dafo)6] (ClO3)2·H2O 2 (dafo=4,5-diazafluoren-9-one) 并且对它们进行了元素分析,红外以及紫外光谱的表征,同时测定了配合物的晶体结构。用紫外光谱,发射光谱和循环伏安三种方法初步研究了配合物1和2与DNA的结合作用,结果表明,配合物1和2与DNA的结合为以插入作用为主 。  相似文献   

9.
Some new hydrazinium transition metal sulfite dihydrate complexes of the formula (N2H5)2M(SO3)2(H2O)2 where M=Fe, Co, Ni, Cu and Zn have been prepared and characterized by hydrazine and metal analyses, magnetic studies, electronic and infrared spectra and thermal analysis. The magnetic studies coupled with electronic spectra of iron, cobalt, nickel and copper complexes indicate their high spin octahedral nature. However the zinc complex is diamagnetic and show only the charge transfer transition. The infrared spectra shows that both the hydrazinium ions are coordinated to the metal ions, the sulfite ions are present as bidentate ligand. The simultaneous TG-DTA of these complexes were investigated in air and nitrogen atmospheres. In air, cobalt, nickel and zinc complexes give respective metal sulfate as the final residue while iron and copper complexes give the mixture of respective metal oxide and sulfate as the decomposition product. In nitrogen atmosphere respective metal sulfites are formed as the end residue.  相似文献   

10.
Complexes of the type [M(painh)(H2O)2X], where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl2 or SO4; painh = p-amino acetophenone isonicotinoyl hydrazone, have been synthesized and characterized by spectral and other physico-chemical techniques. The synthesized complexes are stable powders, insoluble in common organic solvents such as ethanol, benzene, carbon tetrachloride, chloroform and diethyl ether, and are non-electrolytes. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) studies show that the organic ligand decomposes exothermically through various steps. TGA and Infrared (IR) spectral studies indicate the presence of coordinated water in the metal complexes. Magnetic susceptibility measurements and electronic spectra suggest that Mn(II), Co(II), and Ni(II) complexes are paramagnetic with octahedral geometry, whereas Cu(II) complexes have distorted octahedral geometry. The neutral bidentate ligand bonds through >C=O and >C=N–groups in all the complexes. Electron Spin Resonance (ESR) spectra in the solid state show axial symmetry for [Cu(painh)(H2O)2(SO4)] and elongated rhombic symmetry for [Cu(painh)(H2O)2Cl2], suggesting an elongated tetragonally-distorted octahedral structure for both complexes. X-ray powder diffraction parameters for two complexes correspond to tetragonal and orthorhombic crystal lattices. The metal complexes show fair antifungal activity against Rizoctonia sp., Aspergillus sp., Stemphylium sp., and Penicillium sp. and appreciable antibacterial activity against Pseudomonas sp. and Escherichia coli.  相似文献   

11.
Planar nickel(II) complexes involving N,N′-dibutyldithiocarbamate, such as [Ni(bu2dtc)(PPh3)(NC)] (1) and [Ni(bu2dtc)(PPh3)(NCS)] (2) (where bu2dtc = N,N′-dibutyldithiocarbamate anion) have been prepared, characterized by electronic, IR and NMR spectra and their structures determined by single crystal X-ray crystallography. Cyclic voltammetric characterizations of the complexes are also reported. IR spectra of the two complexes indicate the isobidentate coordination (νc-s ? 1095 cm?1 without splitting) of the dithiocarbamate moiety. The important stretching mode characteristic of the thioureide bond (νC–N) occurs at higher wave numbers compared to that of the parent dithiocarbamate complex [Ni(bu2dtc)2]. The electronic spectra of 1 and 2 show signature bands at 426 nm and 478 nm, respectively. NMR spectra show large 31P chemical shifts in both compounds and the most important N13CS2 chemical shift appears at 204.86 ppm and 203.23 ppm for 1 and 2, respectively. The CV studies clearly show the presence of reduced electron density on the nickel ions in mixed-ligand complexes 1 and 2 compared to the parent dithiocarbamate. Single crystal X-ray structure studies show that 2 crystallizes as a new triclinic polymorph, whose molecular structure closely resembles that of the previously reported monoclinic form. Both complexes contain a planar NiS2PN chromophore in keeping with the observed diamagnetism. In both complexes the Ni-S distances are significantly different. The thioureide C–N distances of the complexes are shorter than those observed in the parent [Ni(bu2dtc)2]. The two compounds allow comparison of the influence of NCS? in place of NC?.  相似文献   

12.

Ligand bridged polymeric complexes of the type [M(apainh)(H2O)X] where, M=Mn(II), Co(II), Ni(II), Cu(II), and Zn(II); X=Cl2 or SO4; apainh=acetone p‐amino acetophenone isonicotinoyl hydrazone have been synthesized and characterized. The complexes are stable solids, insoluble in common organic solvents and are non‐electrolytes. Magnetic moments and electronic spectral studies suggest a spin‐free octahedral geometry for all Mn(II), Co(II), Ni(II), and Cu(II) complexes. IR spectra show tridentate nature of the ligand bonding through two >C?N and a >C?O groups. X‐ray powder diffraction parameters for some of the complexes correspond to orthorhombic and tetragonal crystal lattices. Thermal studies (TGA and DTA) of [Mn(apainh)(H2O)SO4] complex show multi‐step decomposition pattern of both an endothermic and exothermic nature. ESR data of Cu(II) chloride complex in solid state show an axial spectra, whereas, Cu(II) sulfate complex is isotropic in nature. The complexes show a significant antifungal activity against a number of pathogenic fungal species and antibacterial activity against Pseudomonas sp. and Clostridium sp. The metal complexes are more active than the ligand.  相似文献   

13.
A series of unsymmetrical tetradentate Schiff bases were synthesized by interaction of 2-hydroxy-1-naphthaldehyde, phenylenediamine and salicylaldehyde, or substituted salicylaldehyde in an ethanolic medium. The oxovanadium(IV) complexes and the ligands were synthesized and characterized by elemental analyses, 1H NMR, infrared, electron paramagnetic resonance, electronic spectra, cyclic voltammetry, and room temperature magnetic susceptibility measurements. The elemental analyses for both the ligands and the metal complexes confirmed purity of the compounds as formulated. Electron paramagnetic resonance spectra of the complexes were measured as powder and in toluene/dichloromethane (9 : 1, v/v) solution at room and liquid N2 temperatures. The g values, g o = 1.971, g = 1.978, and g = 1.950, are the same for all the complexes examined. The vanadium nuclear hyperfine splitting, A o = 101–99, A = 65–64, A = 179–177, vary slightly with substituents on the salicylaldehyde. Infrared spectra reveal strong V=O stretching bands in the range 970–988 cm?1, typical of monomeric five-coordinate complexes. The room temperature magnetic moments of 1.6–1.8 BM for the complexes confirmed that the complexes are V(IV) complexes, with d1 configuration. Only one quasi-reversible wave is observed for each compound and they all showed redox couples with peak-to-peak separation values (ΔE p) ranging from 78 to 83 mV, indicating a single step one electron transfer process. Insulin-mimetic tests on C2C12 muscle cells using Biovision glucose assay showed that all the complexes significantly stimulated cell glucose utilization with negligible cytotoxicity at 0.05 µg µL?1.  相似文献   

14.
Thermal decomposition of Ni(II), Pd(II), and Pt(II) complexes of N-pyrimidin-2ylthiourea (AllPmTu) have been studied by TG, DTG, and DTA and by electron impact (EI) mass spectra. The complexes have the molecular formulae as [Ni(AllPmTu)Cl2(H2O)], [Ni(AllPmTu)2Cl2(H2O)2], and [M(AllPmTu)Cl2], where M = PdII or PtII, and [Pt(AllPmTu)2]. The TG curves show that Ni(II) complexes decompose in three stages to yield NiO as a residue, while Pd(II) and Pt(II) decompose in two stages to yield MS residues. The initial mass losses correspond to elimination of allylamine for Pd(II) and Pt(II) complexes but, allyisothiocyanate for both Ni(II) complexes revealing that sulfur atom of thiourea part is involved in coordination to Pd(II) and Pt(II) but does not to Ni(II). Kinetic parameters (E #, n, ΔH #, ΔS #, ΔG #) of the decomposition stages are determined and correlated with bonding and structural properties of the complexes. The EI mass spectra of the complexes show fragments corresponding to the evolved and intermediate species.  相似文献   

15.
Summary The x-ray crystal structure of [VO2(HL1)] (where L1 denotes the dianion of theS-methylthiosemicarbazone of salicylaldehyde) has been determined and refined to R=0.058 (Rw=0.063) for 3377 observed reflections.There are two symmetrically independent molecules in the asymmetric unit, showing no significant differences in their geometries. The vanadium atom is pentacoordinated in a distorted square-pyramidal arrangement.Absorption spectra of [VO2(HL1)] and [VO2(HL2)], in the 10000–45000 cm–1 range, were calculated from the measured reflectance spectra, applying Kubelka-Munk's theory. The extinction coefficients were determined from the absorption spectra of the solutions of these complexes in methanol. The observed maxima are interpreted on the basis of intraligand transition and charge-transfer spectra on the basis of the presence of approximate groupC 2v for both complexes.  相似文献   

16.
Two cobalt(II) complexes [Co(QCT)2]·Cl·1.5H2O (1) (QCT = quinoline-2-carboxaldehyde thiosemicarbazone) and [Co(QCMT)(CH3OH)Cl2] (2) (QCMT = quinoline-2-carboxaldehyde N4-methyl-thiosemicarbazone) have been synthesized and structurally characterized. Complex 1 crystallizes in a triclinic system with space group P–1 and complex 2 crystallizes in a monoclinic system with space group P2(1)/n. In both complexes the cobalt(II) center is six coordinated with distorted octahedral geometry. The interactions of two complexes with CT-DNA were investigated by electronic absorption spectra, circular dichroism (CD) spectra and fluorescence spectra. Results suggest that the complexes bind to DNA via groove binding mode, and complex 2 has stronger binding ability than complex 1. The in vitro cytotoxicity has been tested against the human lung adenocarcinoma cell line A-549, cisplatin-resistant cell line A-549/CDDP, and human breast adenocarcinoma cell line MCF-7. Complex 2 is more cytotoxic than complex 1, and both of them show higher cytotoxicity than the parent ligands alone. Compared with cisplatin, the two cobalt(II) complexes are more active against A-549/CDDP and MCF-7 cell lines at most experimental concentrations. Notably, although complex 2 is found to be less effective than cisplatin against the parent cell line A-549, it is much more effective than cisplatin against the resistant cell A-549/CDDP.  相似文献   

17.
The chelation behavior of some =N(1) and NH(4) thiosemicarbazones towards copper(II) ions has been investigated. The isolated complexes are characterized by elemental analysis, magnetic moment, electronic, IR, ESR and ms spectra, and by thermal and voltammetric measurements. The substituents on =N(1) and/or NH(4) thiosemicarbazones and the log K values of the ligands play an important role in complex formation. The IR spectra showed that the reagents HAT, HAET, HAPT, HApClPT, H2ST and HBT are deprotonated in the complexes and act as mononegative SN donors; H2SET, H2SpClPT, H2HyMBPT and H2HyMBpClPT, as binegative NSO donors while H2SPT is a mononegative NSO donor. The ESR spectra of the complexes are quite similar and exhibit axially symmetric g-tensor parameters with g ?>?g ?>?2.0023. The loss of thiol and/or hydroxyl hydrogen was confirmed from potentiometric titrations of the ligands and their copper(II) complexes. The protonation constants of the ligands as well as the stability constants of their Cu(II) complexes were calculated. Thermogravimetric analysis of the complexes suggests different decomposition steps. The Coats–Redfern and Horowitz–Metzger equations have been used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition steps of some complexes. The redox properties, nature of the electroactive species and the stability of the complexes towards oxidation are strongly dependent on the substituents on the precursor NH(4) thiosemicarbazone. The redox data are discussed in terms of the kinetic parameters and the reaction mechanism.  相似文献   

18.
Summary Five-coordinate bis(benzeneseleninato)tris(ethylenediamine) cobalt (II)complexes are obtained by reaction of Co(H2O)2 (XC6 H4 SeO2)2 complexes (X = H, p-Cl, m-CI, p-Br, ni-Br, p-Me,p-NO2) with ethylenediamine. The diaquo complexes (one mole)react with ethylenediamine (three moles)to form O-seleninato derivatives. Spectral and magnetic properties show that the complexes are low-spin (s = 1/2) and,on the basis of the electronic spectra a distorted trigonal geometry,D 3h , is suggested. Assignments for the electronic spectra are proposed. Conductivity data indicate that these derivatives are nonelectrolytes. Both ethylenediamine and [RSeO2 ] behave as monodentate ligands.  相似文献   

19.
The complexes trans-[Ni(4-MP)2(NCS)2]·MeCN (1) and trans-[Ni(3-MP)2(NCS)2] (2) (4-MP = tri(4-methylphenyl)phosphine, 3-MP = tri(3-methylphenyl)phosphine) were prepared and characterized by IR, UV–visible, NMR spectra, CV, TGA and single crystal X-ray crystallography. Both the complexes have planar geometry and are diamagnetic. The Ni–P distances in both complexes are relatively short as a result of strong back donation from nickel to phosphorus. The phenyl rings in the 3-MP analogue (2) show increased pitching with reference to the plane formed by the ipso carbons due to increased steric effects. For complex (2), the N–Ni–N and P–Ni–P angles are significantly lower than the almost linear N–Ni–N and N–Ni–P angles observed for both complex (1) and trans-[Ni(PPh3)2(NCS)2]. This observation indicates that the 3-methylphosphine ligand forces complex (2) to distort towards a tetrahedral geometry. IR spectra of both complexes show strong bands around 2,090 cm−1 due to N-coordinated thiocyanate, while the electronic spectra contain d–d transitions around 452 nm. Cyclic voltammograms show that the irreversible one-electron reduction potentials increase in the following order: trans- [Ni(PPh3)2(NCS)2] < trans- [Ni(3-MP)2(NCS)2] < trans-[Ni(4-MP)2(NCS)2], revealing the electron releasing effect of the methyl groups. The planar complexes exhibit interallogony in coordinating solvents.  相似文献   

20.
The coordination behavior of Cu(II) and VO2+ towards some oximes has been investigated. The isolated complexes were characterized by elemental analysis, molar conductance, magnetic moment, spectra (electronic, IR, ESR and mass) and thermal measurements. The IR spectra showed most ligands are deprotonated during complex formation acting as mononegative bi- or tridentate, binegative tetradentate and neutral tridentate. The magnetic moments and electronic spectra showed octahedral, square pyramidal and square-planar structures for the Cu(II) and VO2+ complexes. The ESR spectra of the complexes are quite similar and exhibit axial symmetric g-tensor parameters with g > g > 2.0023 and confirmed the structures. The TG curves showed decomposition steps and indicate stability of the complexes. The ligands can remove Cu(II) ions from water by flotation technology using oleic acid surfactant with high efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号