首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tetramethylsilane (TMS) chemical ionization (CI) mass spectra of some geometrical isomers of unsaturated dicarboxylic acids, esters and isomeric phthalic acids reveal explicit differences. The (E)-acids show an abundant [M + 73 ? CH4]+Ion whereas the (Z)-acids exhibit a strong [M + 73 ? H2O]+ ion in their TMS CI spectra. The loss of CH4 from the adduct of fumaric acid has been confirmed by the study of fumaric acid-d2 and B/E linked scan studies. In the case of esters, the TMS CI spectra of (E)-isomers contain abundant [M + 73]+ adduct ions, whereas these are weakly abundant in the TMS CI of the (Z)-isomers.  相似文献   

2.
Mechanisms are proposed for the formation of M+, [M + 2H]+ and [M + 3H]+ ions in the fast atom bombardment (FAB) mass spectra of 4-(2,2,6,6-tetramethyl-1-oxyl)-piperidol and its carboxylates. Free radical quenching induced by the fast atom beam has been observed. The effects of temperature on the radical quenching and of acid on the FAB mass spectra are discussed. The experiment showed that the volatile liquid samples with vapour pressures higher than that for glycerol produced M+ even-electron molecular ions, and the FAB mass spectra were similar to the corresponding electron ionization mass spectra. For the solid samples, it was found that the free radicals were quenched during the FAB process so that the mononitroxide and dinitroxide compounds produced [M + 2H]+ and [M + 3H]+ ions, respectively. Further experiments showed that the intensities and stabilities of [M + 2H]+ and [M + 3H]+ ions could be improved by addition of acids.  相似文献   

3.
Positive and negative ion fast atom bombardment (FAB) mass spectra of some monosubstituted nitroaromatic isomers are reported. Generally ions carresponding to [M + H]+ and M+ are observed in the positive ion FAB spectra; ions such as [M ? H] ? and M?˙ are observed in the negative ion FAB spectra. The use of FAB mass spectra to distinguish the isomers is discussed. Comparisons of FAB, chemical ionization and electron impact mass spectra of the same isomers (wherever possible) are reported. The structural information obtained in the negative ion FAB spectra complement those obtained in the positive ion FAB spectra.  相似文献   

4.
The positive ion field desorption (FD) spectrum of arginine taken at the best anode temperature only contains a peak due to [M+H]+ ions. At higher emitter temperatures a considerable amount of fragmentation is induced and the [M+H NH3]+ ions become most abundant. Specific 15N labelling reveals that the eliminated ammonia molecule, exclusively, contains one of the terminal nitrogen atoms of the guanidyl group. This also applies to the ammonia loss from metastably decomposing [M+H]+ ions. The positive ion fast atom bombardment (FAB) spectrum shows more fragmentation than the FD spectrum. In contrast with the FD results, the [M+H]+ ions generated upon FAB with ion lifetimes <10−6 s eliminate both ammonia containing one of the terminal nitrogen atoms of the guanidyl group and ammonia containing the α-amino group in the ratio of 1.35, as found by 15N labelling. The metastably decomposing [M+H]+ ions, however, eliminate only the former ammonia molecule. In the negative ion FD and FAB spectra no other peak than that corresponding to the [M H] ion is observed. Some attention has been paid to the thermal degradation of arginine on the basis of a few Curie-point pyrolysis experiments.  相似文献   

5.
Analyses of a series of nitroaromatic compounds using fast atom bombardment (FAB) mass spectrometry are discussed. An interesting ion-molecule reaction leading to [M + O ? H]? ions is observed in the negative ion FAB spectra. Evidence from linked-scan and collision-induced dissociation spectra proved that [M + O ? H]? ions are produced by the following reaction: M + NO2? → [M + NO2]? → [M + O ? H]?. These experiments also showed that M ions are produced in part by the exchange of an electron between M and NO2? species. All samples showed M, [M ? H]? or both ions in their negative ion FAB spectra. Not all analytes studied showed either [M + H]+ and/or M+˙ in the positive ion FAB spectra. No M+˙ ions were observed for ions having ionization energies above ~9 eV.  相似文献   

6.
The chemical ionization mass spectra of different dicarboxylic acids, including saturated and unsaturated aliphatic, aromatic, hydroxyl and amino-substituted dicarboxylic acids, have been studied using pure methanol as the reagent gas. Biomolecular monoesterification and diesterification product ions [M+15]+ and [M+29]+, and adduct ion [M+33]+, were observed, in addition to the protonated molecule [MH]+ and unimolecular water elimination product ions. The formation of a protonated molecule with bridged intramolecular hydrogen bond, and its effect on the esterification of dicarboxylic acids is discussed. Geometric isomers, such as maleic and fumaric acid, and ortho and meta isomers of phthalic acids can be distinguished from each other by methanol chemical ionization mass spectra. When ethanol was used as the reagent gas, similar mass spectra of some dicarboxylic acids were obtained.  相似文献   

7.
Two monometayl- and four dimethyl-triazolocoumarin isomers were characterized by their electron impact mass spectra and by low-energy collision experiments performed on molecular ions M+˙ and other fragment ions with an ion-trap mass spectrometer. High-energy collision-activated dissociation measurements were performed on the protonated [M + H]+ and deprotonated [M ? H]? molecular ion obtained by fast atom bombardment and M+˙ species produced by electron impact ionization on a double-focusing, reverse-geometry instrument. The data obtained allowed unequivocal structural identification of all the compounds investigated.  相似文献   

8.
The fast atom bombardment mass spectrometry of some crown ethers shows the formation of both [M + H]+ and [M ? H]+ ions, paralleling behaviour already observed using electron impact ionization. The study of these oily samples with and without a glycerol matrix, trifluoroacetic acid or alkali metal salts, suggests that the ionization process does not occur in the condensed phase, but in the selvedge region by gas-phase ion-molecule reactions in accordance with the ‘gas-phase explosion model’. Positive-ion chemical ionization experiments support this proposal.  相似文献   

9.
A number of clinically significant penem β-lactams, both free acids and sodium salts, were investigated by mass-analyzed ion kinetic energy spectrometry (MIKES) following fast atom bombardment (FAB) ionization. The collisionally activated dissociation (CAD) products of [M + H] + and [M + Na]+ ions are described. Carbon dioxide loss was observed for some of the free acids, whereas a daughter ion generated by β-lactam ring cleavage was characteristic of the sodiated species. Other fragments included successive cleavages and rearrangements of the substituent side-chain, permitting complete characterization of these chains. The fragmentation pattern for both protonated and sodiated species were more clearly established by CAD MIKES than by normal FAB mass spectral analyses. A notable feature of this technique was its ability to differentiate between pairs of regioisomeric penems on the basis of their fragmentation patterns. These compounds could not be differentiated in the usual mass spectra.  相似文献   

10.
The nature and location of a variety of modifications of fatty acids are determined by collisional activation (CA) of [M + 2Li ? H]+ ions. The sample molecules are cationized in situ on the probe tip, desorbed by fast atom bombardment and, upon CA, undergo charge-remote decompositions. This approach is a direct, totally instrumental method for structure elucidation. Advantages of CA of [M + 2Li ? H]+ ions are that fatty acids with substituents in close proximity to the carboxylate terminus and modified short-chain acids are readily determined: decompositions of carboxylate anions of these fatty acids result in collision-activated dissociation (CAD) spectra that give incomplete structural information. However, the CAD spectra of some [M ? H]? ions, such as those from epoxy acids, are simpler to interpret than those of the [M + 2Li ? H]+ ions. Thus, CA of fatty acid [M + 2Li ? H]+ ions is a complementary approach to CA of [M ? H]? ions for determining the fatty acid structures investigated here. The use of this approach for analyzing complex mixtures of modified fatty acids is also evaluated.  相似文献   

11.
High field asymmetric waveform ion mobility spectrometry (FAIMS) provides atmospheric pressure, room temperature, low-resolution separation of gas-phase ions. The FAIMS analyzer acts as an ion filter that can continuously transmit one type of ion, independent of m/z. The combination of FAIMS with electrospray ionization and mass spectrometry (ESI-FAIMS-MS) is a powerful technique and is used in this study to investigate the cluster ions of leucine enkephalin (YGGFL). Separation by FAIMS of leucine enkephalin ions having the same m/z (m/z 556.5), [M + H]+ and [2M + 2H]2+, was observed. In addition, four complex ions of leucine enkephalin, [2M + H]+, [4M + 2H]2+, [6M + 3H]3+, and [8M + 4H]4+, all having m/z 1112, were shown to be separated in FAIMS. Fragmentation of ions as the result of harsh conditions within the mass spectrometer interface (FAIMS-MS) was shown to provide similar information to that obtained from MS/MS experiments in conventional ESI-MS.  相似文献   

12.
The unimolecular fragmentations of [M + H]+ and [M – H]? ions from four 2-aryl-2-methyl-1,3-dithianes are described and clarified with the aid of deuterated derivatives. Comparison of the MIKE spectra of [M + H]+ species obtained under chemical ionization and fast atom bombardment (FAB) conditions reveals differences which are attributed to the different energetics involved in the two ionization processes. It is suggested that FAB is a ‘softer’ ionization technique but, at the same time, it provides, for the possibility of solvation, reaction sites not available in gas-phase protonation. [M – H]? species and anionic fragments thereof were generally not obtained under FAB(?) conditions. [M – H]? ions are readily produced in gas-phase reactions with OH? via proton abstraction from C(4) or C(5), and from the 2-methyl substituent; and they fragment according to several reaction pathways.  相似文献   

13.
The positive-ion fast atom bombardment mass spectra of permethylated aldo- and pseudoaldobiouronic acids can be used to distinguish these classes of compounds. The collisional-induced dissociation spectra of the [M + H]+ ions show fragment ions resulting from glycosidic bond cleavage and successive losses of methanol molecules. These spectra together with those of the [M + H ? MeOH]+ oxonium ions allow the identification of the type of interglycosidic linkage. Collisional activation of the relatively stable [M + Na]+ ions show many fragmentations which are common to alkali cationized permethylated saccharides. Moreover, fragment ions resulting from two-bond ring cleavage processes yield additional information with respect to the linkage between the hexose and uronic acid units.  相似文献   

14.
Reduction of analytes in ionization processes often obscures the determination of molecular structure. The reduction of analytes is found to take place in various desorption/ionization methods such as fast atom bombardment (FAB), secondary ion mass spectrometry (SIMS), matrix‐assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon (DIOS). To examine the extent of the reduction reactions taking place in electrospray droplet impact (EDI) processes, reduction‐sensitive dyes and S‐nitrosylated peptide were analyzed by EDI. No reduction was observed for methylene blue. While methyl red has a lower reduction potential than methylene blue, the reduction product ions were detected. For S‐nitrosylated peptide, protonated molecule ion [M + H]+ and NO‐eliminated molecular ion [M − NO + H]+• were observed but reduction reactions are largely suppressed in EDI compared with that in MALDI. As such, the analytes examined suffer from little reduction reactions in EDI. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
When mass-analysed ion kinetic energy (MIKE) spectra are required to discriminate between isomeric ions formed under conditons of fast atom bombardment (FAB) in the ion source, severe interference may be observed. The interfering peaks in MIKE spectra obtained with a reversed-geometry instrument can arise from different sources. Moreover, the intensity distribution of the true ions from the selected precursor ion may depend strongly on the instrument being used. This means that the FAB–MIKE or collisionally induced dissociation (CID) spectrum is not an absolute characteristic of a particular ion. The [M + H ? HOAc]+ ion in the spectrum of peracetylated ribopyranose is used as an example to illustrate this and to trace and discuss the origin of the phenomena observed.  相似文献   

16.
运用低能碰撞诱导解离(CID)研究了电子轰击(EI)、快原子轰击(FAB)电离条件下质子化亮氨酸与异亮氨酸解高产生亚稳离子[MH-CO2H2]+的单分子质谱碎裂,二种异构体呈现出了各自不同的解离特征,根据CID的特征碎片离子和氘代同位素标记实验,提出了其碎裂过程存在离子/中性(碎片)复合物中间体碎裂机理,并对有关的特征离子的形成进行了讨论.  相似文献   

17.
The relationships between the ionization profile, sensitivity, and structures of 64 exogenous anabolic steroids (groups I–IV) was investigated under electrospray ionization (ESI) conditions. The target analytes were ionized as [M + H]+ or [M + H–nH2O]+ in the positive mode, and these ions were used as precursor ions for selected reaction monitoring analysis. The collision energy and Q3 ions were optimized based on the sensitivity and selectivity. The limits of detection (LODs) were 0.05–20 ng/mL for the 64 steroids. The LODs for 38 compounds, 14 compounds and 12 compounds were in the range of 0.05–1, 2–5 and 10–20 ng/mL, respectively. Steroids including the conjugated keto‐functional group at C3 showed good proton affinity and stability, and generated the [M + H]+ ion as the most abundant precursor ion. In addition, the LODs of steroids using the [M + H]+ ion as the precursor ion were mostly distributed at low concentrations. In contrast, steroids containing conjugated/unconjugated hydroxyl functional groups at C3 generated [M + H ? H2O]+ or [M + H ? 2H2O]+ ions, and these steroids showed relatively high LODs owing to poor stability and multiple ion formation. An LC‐MS/MS method based on the present ionization profile was developed and validated for the determination of 78 steroids (groups I–V) in human urine. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A series of new synthetic tetrabenzyl N-glucosidic, N-mannosidic and N-galactosidic isomers were investigated by fast atom bombardment (FAB)/mass-analysed ion kinetic energy (MIKE) spectrometry. The [M + H]+ ions were obtained with high abundance in the FAB spectra when using 3-nitrobenzyl alcohol as the matrix. The FAB/MIKE spectra provide characteristic daughter ions fragmented from selected molecular parent ions, allowing these isomers to be differentiated. In addition, an interesting rearrangement was found from the MIKE spectra, indicating that the benzyl (Bzl) group on the sugar ring is rearranged on to the N atom of the base (R) group to form [R + Bzl + H]+ and [R+ 2Bzl]+ ions.  相似文献   

19.
The use of copper ions for chemical ionization (CI) coupled with gas chromatography/mass spectrometry (GC/MS) of hydrocarbons is reported. Cu+?CI was performed in a high-pressure, fast atom bombardment ion source coupled with both a gas chromatograph and a mass spectrometer. The suitability of the Cu+?CI method is illustrated by the analysis of pure alkylbenzenes, alkylthiophenes, octenes, and by the analysis of a light mixture of aromatic hydrocarbons. The Cu+?CI/GC mass spectra display an abundant [M+63Cu]+ ion, together with fragmentations, that are of structural interest. The detection limit for isobutylbenzene, taken as model compound, is 100 times lower than that for electron ionization.  相似文献   

20.
Positive-ion fast atom bombardment mass spectrometry appears to be a useful method for the differentiation of anomeric C-glycosides. The mass-analysed ion kinetic energy (MIKE) and collision-activated dissociation (CAD) MIKE spectra of selected positive ions can be used as fingerprints of the α- or β-anomers. The main fragmentation routes and particularly the formation of the [M ? H]+ ion and the [M + H ? PhCH2OH]+ ion were traced for each anomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号