首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The underlying mechanism of UV light-induced dissociation and visible light-induced reformation of vesicles formed by an azobenzene diblock copolymer was investigated. These processes were studied in situ by monitoring changes in optical transmittance of the vesicular solution while being exposed to UV or visible light irradiation. The results indicate that the UV-induced dissociation of the vesicles results from their thermodynamic instability due to a shift of the hydrophilic/hydrophobic balance arising from the trans-cis isomerization, while their reaggregation takes place upon visible light irradiation that shifts the hydrophilic/hydrophobic balance in the opposite direction after the reverse cis-trans isomerization. The study suggests a specific design principle for obtaining UV light-dissociable and visible light-recoverable vesicles based on azobenzene block copolymers. On one hand, the structure of azobenzene moiety used in the hydrophobic block should have a small (near zero) dipole moment in the trans form and a significantly higher dipole moment in the cis form, which ensures a significant increase in polarity of the hydrophobic block under UV light irradiation. On the other hand, the hydrophilic block should be weakly hydrophilic. The conjunction of the two conditions can make the light-induced shift of the hydrophilic/hydrophobic balance important enough to lead to the reversible change in vesicular aggregation.  相似文献   

2.
New heterocyclic TTF compounds 1a-c and 2 with an azobenzene moiety were described. The oxidation potential of 1a could be reversibly modulated by alternating UV and visible light irradiation. As a result, a molecular switch with UV/visible light as the inputs and the electrochemical signal as the output was achieved. Moreover, it was found that the influence of the azobenzene photoisomerization on the electronic property of the TTF unit became stronger with shorter spacers in compounds 1a-c.  相似文献   

3.
Azobenzene moiety-containing methylcellulose (AB-MC) was prepared, the changes of the cloud point of its aqueous solutions as a thermotropic sol-gel transformation behaviour were investigated under irradiation with UV light. AB-MC's with degrees of substitution by the azobenzene moiety DSAB > 2,5 · 10-2 were insoluble in water. The azobenzene moiety in the AB-MC was confirmed to be reversibly isomerized from the trans- to the cis-form under irradiation with UV light of wavelengths 390 > λ > 310 nm and from the cis-to the trans-form under irradiation with visible light of λ > 400 nm. The cloud point value of the aqueous solution of AB-MC increased under irradiation with UV light of 390 > λ > 310 nm for the AB-MC's with a DSAB value in a certain range and the extent of the increase in the cloud point value was higher at higher concentrations of AB-MC.  相似文献   

4.
Two photosensitive chiral liquid crystalline azobenzene‐containing polymethacrylates having different length of flexible spacer connecting chromophores with backbone were synthesized and their phase behavior and photo‐optical properties were studied. Both polymers consist of lateral methyl substituents in ortho‐position of azobenzene chromophores providing high photosensitivity even in red spectral region as well as high thermal stability of photoinduced Z‐form of azobenzene chromophores. It is shown, that smectic phase (SmA*) formation in films of polymer with longer spacer predetermines its quite unusual spectral response to UV and subsequent visible light actions. The SmA* phase promotes spontaneous homeotropic alignment of azobenzene chromophores in polymer films. UV‐irradiation induces not only E‐Z isomerization but also results in disruption of homeotropic alignment, whereas subsequent visible light action enables to obtain films with the low degree of chromophores orientation. The photo‐orientation phenomena under the action of polarized light of different wavelength on polymer films were studied. The possibility of using red polarized light of moderate intensity for optical photorecording on polymer films is demonstrated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2962–2970  相似文献   

5.
To develop photo-tunable chromatography, several azobenzene derivatives were immobilized or modified on silica gels or incorporated into polymers. The supports prepared were used as stationary phases in semi-micro HPLC, and the photo-dependence of their retention evaluated. On these stationary phases, the retention measured with 2-propanol in hexane was increased by UV irradiation; in contrast, the retention was decreased when methanol was used as mobile phase. It was assumed that the polarity of the stationary phase increases when the molecular structure of the azobenzene moieties changes from the trans to the cis form. On irradiation of the column with visible light after UV irradiation and with methanol as mobile phase, the change of retention proved to be reversible. However, this reverse change was less dramatic than the initial change. Such retention behavior is attributable to photo-isomerization of the azobenzene moieties. These findings will be exploited in our development of new photo-tunable stationary phases and new photo-controlled separation systems.  相似文献   

6.
Photoresponsive hydrogels with high performance are of considerable interest because of their wide application. In this paper, a kind of smart poly (vinyl alcohol) (PVA) hydrogel is obtained using 4, 4′-azodibenzoic acid as cross-link agent. The hydrogels have the ability of swelling and shrinking reversibly under irradiation by ultraviolet or visible light because azobenzene groups show trans–cis isomerization under suitable light wavenumber. Under UV irradiation, azobenzene takes the cis structure which leads to volume decreases; macroscopically, shrinking can be observed. Under visible light irradiation, the volume recovers, and swelling can be observed macroscopically. Hydrogels have excellent swelling/shrinking recovery properties even after 12 cycles. The procedure achieves loop control of the transformation from light energy to mechanical energy.  相似文献   

7.
The movement of a liquid droplet on a flat surface functionalized with a photochromic azobenzene may be driven by the irradiation of spatially distinct areas of the drop with different UV and visible light fluxes to create a gradient in the surface tension. In order to better understand and control this phenomenon, we have measured the wetting characteristics of these surfaces for a variety of liquids after UV and visible light irradiation. The results are used to approximate the components of the azobenzene surface energy under UV and visible light using the van Oss-Chaudhury-Good equation. These components, in combination with liquid parameters, allow one to estimate the strength of the surface interaction as given by the advancing contact angle for various liquids. The azobenzene monolayers were formed on smooth air-oxidized Si surfaces through 3-aminopropylmethyldiethoxysilane linkages. The experimental advancing and receding contact angles were determined following azobenzene photoisomerization under visible and ultraviolet (UV) light. Reversible light-induced advancing contact-angle changes ranging from 8 to 16 degrees were observed. A large reversible change in contact angle by photoswitching of 12.4 degrees was achieved for water. The millimeter-scale transport of 5 microL droplets of certain liquids was achieved by creating a spatial gradient in visible/UV light across the droplets. A criterion for light-induced motion of droplets is shown to be consistent with the response of a variety of liquids. The type of light-driven fluid movement observed could have applications in microfluidic devices.  相似文献   

8.
Novel water‐soluble triply‐responsive homopolymers of N,N‐dimethylaminoethyl methacrylate (DMAEMA) containing an azobenzene moiety as the terminal group were synthesized by atom transfer radical polymerization (ATRP) technique. The ATRP process of DMAEMA was initiated by an azobenzene derivative substituted with a 2‐bromoisobutyryl group (Azo‐Br) in the presence of CuCl/Me6TREN in 1,4‐dioxane as a catalyst system. The molecular weights and their polydispersities of the resulting homopolymers (Azo‐PDMAEMA) were characterized by gel permeation chromatography (GPC). The homopolymers are soluble in aqueous solution and exhibit a lower critical solution temperature (LCST) that alternated reversibly in response to Ph and photoisomerization of the terminal azobenzene moiety. It was found that the LCST increased as pH decreased in the range of testing. Under UV light irradiation, the trans‐to‐cis photoisomerization of the azobenzene moiety resulted in a higher LCST, whereas it recovered under visible light irradiation. This kind of polymers should be particularly interesting for a variety of potential applications in some promising areas, such as drug controlled‐releasing carriers and intelligent materials because of the multistimuli responsive property. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2564–2570, 2010  相似文献   

9.
The shuttling process of alpha-CyD in three rotaxanes (1-3) containing alpha-cyclodextrin (alpha-CyD) as a ring, azobenzene as a photoactive group, viologen as an energy barrier for slipping of the ring, and 2,4-dinitrobenzene as a stopper was investigated. The trans-cis photoisomerization of 1 by UV light irradiation occurred in both DMSO and water due to the movement of alpha-CyD toward the ethylene group, while the photoisomerization of 2 occurred in DMSO, but not in water. No photoisomerization was observed for 3 in both water and DMSO. The activation parameters of 1 and 1-ref in DMSO are subject to a compensation relation between deltaS(double dagger) and deltaH(double dagger); however, in water, the deltaS(double dagger) terms are not compensated by the deltaH(double dagger) terms. Alternating irradiation of the UV and visible lights resulted in a reversible change in the induced circular dichroism (ICD) bands of trans-1 and cis-1. In contrast, after the UV light irradiation, the ICD band of trans-2 decreased without the appearance of any bands of cis-2. The NMR spectra of 2 in DMSO showed coalescence of the split signals for the methylene and for the viologen protons due to the shuttling of alpha-CyD. Both the NOE differential spectra for cis-1 in water after UV light irradiation and 2 in DMSO after heating to 120 degrees C showed the negative NOE peaks assigned to interior protons of alpha-CyD, suggesting that alpha-CyD in cis-1 exists at the one ethylene moiety, and alpha-CyDs in cis-2 and 2 heated in DMSO exist at the propylene moieties.  相似文献   

10.
Photo-induced structural changes of azobenzene Langmuir-Blodgett films   总被引:2,自引:0,他引:2  
Structural changes of the Langmuir-Blodgett (LB) films of azobenzene accompanied by photoisomerization are described. First, photoisomerization is explained in terms of 'free volume'. In the polyion complex monolayers of amphiphiles having two azobenzene units at the air-water interface, the area per molecule depends on the polycation species. The fraction of cis-azobenzene in the LB films at the photostationary state under the illumination with UV light increased with increasing area per molecule, which is consistent with the concept of free volume. Second, a counter example of the concept of free volume is presented. Three-dimensional cone-shaped structures developed with trans-to-cis photoisomerization in the polyion complex LB film of a water-soluble amphiphilic azobenzene. These structures appeared and disappeared reversibly by alternate illumination with UV and visible light. The results indicate that the two-dimensional LB film structure exerts significant modification by photoisomerization. This is against the concept of free volume because this concept does not consider the possibility that the two-dimensional LB film structures may change into three-dimensional ones. Finally, photo-induced J-aggregate formation of non-photochromic and photochromic dyes is described. Two cyanine dyes were each mixed with an amphiphilic azobenzene in the LB films. These cyanine dyes are known to form J-aggregates in single-component LB films. In the mixed LB films, the J-aggregate formation was suppressed to some extent. The alternate illumination of the films with UV and visible light caused the photoisomerization of azobenzene in the mixed LB films, which triggered the J-aggregate formation of the cyanine dyes. The J-aggregate formation was accompanied by the development of three-dimensional cone-shaped structures from the film surface. When an amphiphilic merocyanine was mixed with the azobenzene in the LB films, J-aggregate formation was also induced by the alternate illumination with UV and visible light. This J-aggregate formation was also accompanied by a large morphological change: circular domains changed into fractal-like ones. The J-aggregate formation of the dyes and the concomitant morphological change were irreversible. In these cases, the photoisomerization of azobenzene served as a trigger to induce self-organization of the dye molecules.  相似文献   

11.
The photo-responses of the retention and enantioseparation of several optical isomers were evaluated using an azobenzene-modified gamma-cyclodextrin stationary phase (Az gamma-CDSP) in micro-HPLC. UV light irradiation induced a decrease in the retention and the chiral selectivity for N-(3,5-dinitrobenzoyl)-1-phenylethylamine (DNBPEA) and N-(3,5-dinitrobenzoyl)-1-(1-naphtylethyl)amine (DNBNEA), while an increase was induced for dansylphenylalanine (DnsPhe) using a mixture of methanol and aqueous phosphate buffer as the mobile phase. No changes in the retention and the enantiomer separation of benzoin were observed with UV light irradiation. The retention behaviors were recovered by visible-light irradiation. It was speculated that the main factor of the change in the retention behavior was a change in the pi-pi interaction due to the azobenzene moiety of the stationary phase with photo-irradiation. Comparing the retention behavior before and after UV light irradiation, a suitable condition for obtaining a better resolution and enantiomer separation would be chosen using Az gamma-CDSP.  相似文献   

12.
A novel visible light responsive random copolymer consisting of hydrophobic azobenzene‐containing acrylate units and hydrophilic acrylic acid units has been prepared. The azobenzene molecule bearing methoxy groups at all four ortho positions is readily synthesized by one‐step conversion of diazotization. The as‐prepared polymer can self‐assemble into nanoparticles in water due to its amphiphilic nature. The tetra‐o‐methoxy‐substituted azobenzene‐functionalized polymer can exhibit the trans‐to‐cis photoswitching under the irradiation with green light of 520 nm and the cis‐to‐trans photoswitching under the irradiation with blue light of 420 nm in both solution and aggregate state. The morphologies of the self‐assembled nanoparticles are revealed by TEM and DLS. The controlled release of loaded molecules from the nanoparticles can be realized by adjusting pH value since the copolymer possesses pH responsive acrylic acid groups. The fluorescence of loaded Nile Red in the nanoparticles can be tuned upon the visible light irradiation. The reversible photoswitching of the azobenzene‐functionalized polymer under visible light may endow the polymer with wide applications without using ultraviolet light at all. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2768–2775  相似文献   

13.
A linear supramolecular architecture was successfully constructed by the inclusion complexation of α‐cyclodextrin with azobenzene and the host‐stabilized charge‐transfer interaction of naphthalene and a bispyridinium guest with cucurbit[8]uril in water, which was comprehensively characterized by 1H NMR spectroscopy, UV/Vis absorption, fluorescence, circular dichroism spectroscopy, dynamic laser scattering, and microscopic observations. Significantly, because it benefits from the photoinduced isomerization of the azophenyl group and the chemical reduction of bispyridinium moiety with noncovalent connections, the assembly/disassembly process of this supramolecular nanostructure can be efficiently modulated by external stimuli, including temperature, UV and visible‐light irradiation, and chemical redox.  相似文献   

14.
In this paper, two kinds of azobenzene-functionalized polythiophene liquid-crystalline (LC) polymers with different spacer lengths (n = 6 and 11) were synthesized. The photochromic behaviors and photoresponsive property of these polymer films were investigated by means of spectrofluorophotometer, polarized optical microscope and ARC UV lamp. The results have shown that these liquid-crystalline polythiophene films exhibit a quite fast photochemical phase transition speed and a better opticalswitching property. Furthermore, the existence of the azobenzene moiety in the side chain has also rendered the polythiophene some interesting optical properties that can be modulated by UV light irradiation, e.g., the intensity of photoluminescent emission associated with the conjugated polythiophene main chain was found to decrease upon UV irradiation and the effect becomes more prominent when shorter spacers are used in between the azobenzene group and the main chain.  相似文献   

15.
A photoresponsive polypeptide, two -helical poly(-methyl L-glutamate)s joined with an azobenzene (MAzoM,Mn=11000), have been prepared. Monolayers of the polypeptide were formed at air-water interface and the photoresponsive behavior of the monolayer obtained was investigated. A trans to cis photo-isomerization of the azobenzene moiety in the main chain of MAzoM induced by UV light irradiation resulted in a bending structure formation in the main chain of the polypeptide via photo-induced changes in the geometry of the azobenzene chromophore. As a result, the limiting area per molecule of the MAzoM monolayer was decreased. Based on the degree of the decrease in the limiting area per molecule, it was estimated that the bending angle between the two -helical rods of MAzoM molecule under UV light irradiation was ca. 140°. The photo-responsive behavior of the MAzoM monolayer was reversible and consisted along with the photo-isomerization of azobenzene moiety.  相似文献   

16.
A reflection cloud point technique allows for rapid screening of light‐dependent phase separation temperatures of thermo‐ and photoresponsive polymer/ionic liquid solutions as a function of sample thickness, molecular weight, and copolymer composition. We systematically investigate the lower critical solution temperature (LCST) phase behavior of poly(benzyl methacrylate‐stat‐(4‐phenylazophenyl methacrylate)). Under UV light, the photoresponsive azobenzene‐based repeat unit becomes more polar as the cis form dominates, increasing its solubility in the ionic liquids 1‐ethyl‐3‐methyl imidazolium and 1‐butyl‐3‐methyl imidazolium bis(trifluoromethanesulfonyl)imide. This light‐dependent polarity change leads to two phase separation temperatures, depending on the illumination wavelength. Under visible light, which drives the azobenzene moiety into the trans ground state, the LCST shows no sample thickness dependence. Under UV light, however, sample thickness plays a significant role. Samples of around 1 mm thickness show no apparent difference under UV and visible light, whereas thinner samples show an increasing difference between the phase separation temperatures with decreasing sample thickness. Neither phase separation temperature exhibits a significant dependence on molecular weight. Increasing the photoresponsive monomer content did not lead to an increase in the difference between the phase separation temperatures at fixed thickness, due to a concomitant increase in UV light absorbed at the sample surface. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 281–287  相似文献   

17.

Three kinds of photoresponsive copolymers with azobenzene side chains were synthesized by radical polymerization of N‐4‐phenylazophenylacrylamide (PAPA) with N‐isopropylacrylamide (NIPAM), N,N‐diethylacrylamide (DEAM) or N,N‐dimethylacrylamide (DMAM) respectively. Their structures were characterized by FT‐IR, 1H‐NMR and UV/Vis spectroscopy. Their reversible photoresponses were studied with or without α‐cyclodextrin (α‐CD), which showed that both the copolymers and their inclusion complexes with α‐CD underwent rapid photoisomerization. The lower critical solution temperature (LCST) of the copolymers and their inclusion complexes with α‐CD were investigated by cloud point measurement, which showed that the LCST of three kinds of copolymers increased largely after adding α‐CD. After UV irradiation on the solutions of copolymers and their inclusion complexes, the LCST of the copolymers increased slightly with the absence of α‐CD, while decreased largely with the presence of α‐CD. Furthermore, the LCST reverted to its originality after visible light irradiation. This change of LCST could be reversibly controlled by UV and visible light irradiation alternately. In particular, in the copolymer of PAPA and DMAM, the reversible water solubility of the inclusion complexes could be triggered by alternating UV and visible light irradiation.  相似文献   

18.
An azobenzene-modified gamma-cyclodextrin stationary phase (Az gamma-CDSP) was prepared and its photo- and temperature-responses for the retention of perylene and pentacene were investigated using a mixture of methanol and water as the mobile phase in micro-HPLC. The retention of perylene slightly increased, whereas that of pentacene significantly decreased by UV light irradiation to Az gamma-CDSP. These retentions recovered upon irradiation with visible light. Both retentions decreased upon an increase in the column temperature. It was presumed that the trans-azobenzene moiety acts as a preventive cap for perylene and a spacing for pentacene in filling the CD cavity. An azobenzene-modified stationary phase changed its retention behavior with the column temperature and the light irradiation. An improvement in the micro-HPLC system and the optimization of the molecular structure of the photo-responsive stationary phase would provide selective retention control by the irradiation of light in micro-separation systems.  相似文献   

19.
Producing ionic liquids (ILs) that function as molecular trigger for macroscopic change is a challenging issue. Photoisomerization of an azobenzene IL at the molecular level evokes a macroscopic response (light‐controlled mechanical sol–gel transitions) for ABA triblock copolymer solutions. The A endblocks, poly(2‐phenylethyl methacrylate), show a lower critical solution temperature in the IL mixture containing azobenzene, while the B midblock, poly(methyl methacrylate), is compatible with the mixture. In a concentrated polymer solution, different gelation temperatures were observed in it under dark and UV conditions. Light‐controlled sol–gel transitions were achieved by a photoresponsive solubility change of the A endblocks upon photoisomerization of the azobenzene IL. Therefore, an azobenzene IL as a molecular switch can tune the self‐assembly of a thermoresponsive polymer, leading to macroscopic light‐controlled sol–gel transitions.  相似文献   

20.
Photoirradiation effect on potential response to metal ion concentrations and photoinduced potential change were investigated with poly(vinyl chloride) membranes based on a Malachite Green derivative carrying a bis(monoaza-15-crown-5) moiety, by comparing other Malachite Green derivatives. The Malachite Green carrying a bis(crown ether) moiety caused a potential response to potassium ion concentration changes under dark condition. In the membrane potential response, a clear-cut photoinduced switching of potential response was realized by the membrane of Malachite Green carrying a bis(crown ether) moiety, which exhibited no potential response to potassium ion concentrations (0 mV/decade) on UV irradiation. On the other hand, a Malachite Green carrying a monocyclic benzocrown ether moiety showed a considerable dependence of the membrane potential on the metal ion concentrations under both dark and UV irradiation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号