首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultra-oriented high-density polyethylene fibers (HDPE) have been prepared by solid-state extrusion over 60–140°C range using capillary draw ratios up to 52 and extrusion pressures of 0.12 to 0.49 GPa. The properties of the fibers have been assessed by birefringence, thermal expansivity, differential scanning calorimetry, x-ray analysis, and mechanical testing. A maximum birefringence of 0.0637 ± 0.0015 was obtained, greater than the calculated value of 0.059 for the intrinsic birefringence of the orthorhombic crystal phase. The maximum modulus obtained was 70 GPa. The melting point, density, crystallinity, and negative thermal expansion coefficient parallel to the fiber axis all increase rapidly with draw ratio and at draw ratios of 20–30 attain limiting values comparable with those of a polyethylene single crystal. The properties of the fibers have been analyzed using the simple rule of mixtures, assuming a two-phase model of crystalline and noncrystalline microstructure. The orientation of the noncrystalline phase with draw ratio was determined by birefringence and x-ray measurements. Solid-state extrusion of HDPE near the ambient melting point produced a c-axis orientation of 0.996 and a noncrystalline orientation function of 0.36. Extrusion 50°C below the ambient melting point produced a decrease in crystallinity, c-axis orientation, melting point, and birefringence, but the noncrystalline orientation increased at low draw ratios and was responsible for the increased thermal shrinkage of the fibers.  相似文献   

2.
The recently developed technique of solid-state coextrusion for ultradrawing semicrystalline thermoplastics has been applied in the preparation of self-reinforced high-density polyethylene extrudates. The extrudates consist of definite core and sheath phases composed of different molecular weights (Mw) in the range of 60,000–250,000 and different molecular weight distributions (Mw/Mn = 3.0–20). Concentric billets of two different phases were prepared for extrusion by in serting a polyethylene rod within a tubular billet of a different high-density polyethylene followed by melting the two phases to obtain bonding between them. The billet was then split longitudinally to increase extrusion speed and extruded at 120°C, 0.23 GPa through a conical die of extrusion draw ratio 25. Extrudates of high tensile modulus (38 GPa) and strength (0.50 GPa) could be produced in a steady state process at a rate near 0.25 cm/min. The tensile properties of the extrudates from either the single or concentric billets increased with average molecular weight and were insensitive to the molecular weight distribution of the constituent phases. Thermal analysis indicated a high deformation efficiency for the sheath and core phases of the extrudates by the coextrusion technique.  相似文献   

3.
Films of uniaxially oriented poly(ethylene terephthalate) (PET), M v = 81,000, have been drawn by solid-state coextrusion in the range 40–100°C surrounded by polyethylene. This is well below the PET melting temperature and in some cases below its glass transition temperature. Properties of the extrudates, such as degree of crystallinity, mechanical and thermal properties, were investigated as a function of coextrusion temperature and draw ratio (EDR ≤ 4.4). The results show that the percent crystallinity depends strongly on draw ratio, whereas its sensitivity to extrusion temperature is limited only to the highest draw ratio (4.4). On the other hand, Young's modulus was sensitive to both extrusion temperature and draw ratio, exhibiting a maximum at EDR = 4.4 and Text = 65°C. Above this temperature, moduli decrease apparently because of increased chain mobility, resulting in dissipation of chain orientation. Furthermore, changes in yield and tensile strength followed the changes in mechanical properties, suggesting that they are dominated by the same factors. The cold-crystallization temperature TCC also revealed information about the morphological changes occurring during the extrusion drawing. For samples of EDR = 4.4, TCC increased with extrusion temperature, suggesting again dissipation of orientation by thermal motions. On the other hand, TCC decreases with EDR, and a ΔTCC as high as 73°C was found. Conventional drawing of amorphous PET has been widely reported. To our knowledge this is the first time oriented PET has been prepared using the advantages of solid-state coextrusion.  相似文献   

4.
The rolling and roller-drawing of poly(ether ether ketone) (PEEK) sheets were carried out in the roller temperature range of 165-262°C. The crystal orientation functions of the PEEK sheets were determined from the azimuthal intensity distribution of wide-angle x-ray diffraction, and the orientation behavior in the amorphous region was characterized by the measurements of sonic modulus and polarized fluorescence. The orientation functions increase monotonically with increasing draw ratio. The orientation function in the amorphous region is close to that of crystal orientation function of the same sample. The long period evaluated by small-angle x-ray scattering is almost constant over the draw ratio range studied, whereas the crystallite size along the 001 plane, D001 tends to increase with increasing draw ratio. The value of the crystallite size exceeds the product of the crystallinity and the long period. The result suggests the formation of the crystalline linkages that penetrate the periodic layers. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
A wide-angle x-ray diffraction (WAXD) study of the development of molecular orientation in the crystalline phase of ultra-high–molecular weight polyethylene films prepared by the gelation–crystallization method is presented. WAXD scans of the undrawn films show that the lamellae are oriented in the plane of the films. Upon drawing at 130°C, the orientation of the molecular chains changes from the direction normal to the film surface (ND) to the elongation direction. The decrease of the 200/020 intensity ratio at low draw ration (λ <10) indicates that double orientation develops during the transformation from the lamellar to the fibrillar morphology, with the a-axis oriented parallel to ND. The orientation distributions of the 110, 200, 020, and 002 planes of the orthorhombic unit cell of polyethylene were studied and characterized by the coefficients of a Legendre polynomial series. At a draw ratio of 4.5, the second-order coefficient, 〈P2(cos χ〉, already gets close to its limiting value, but it is shown that higher order coefficients of the polynomial series can be used to describe the evolution of the orentation, even up to λ = 50. The coefficients relative to the molecular chain orientation, 〈Pn(cos χ)〉c, can be calculated from different crystalline reflections. Curve-fitting calculations were made in order to improve the correlation between the results obtained from the orientation distribution of the 110, 020, and 002 planes. A Person VII function was found to give a better fit of the experimental curves than Gaussian or Lorentzian equations. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Atactic polystyrene (aPS)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and isotactic polystyrene (iPS)/PPO compatible blends of varied composition were subjected to solid-state coextrusion. The efficiency of drawing, orientation, and crystallinity development were studied as a function of composition and draw ratio. The efficiency of drawing, as measured by elastic recovery, is high for coextrusion at temperatures ?40°C above the glass transition temperature of the particular blend. The maximum attainable draw ratio for the blends decreased with increasing PPO concentration; the highest blend draw ratio attained was 6.5 for 25 wt % PPO. The orientation on drawing, as measured by birefringence, increased with draw but decreased with increasing PPO component at the same draw ratio. When PPO was <50% in iPS/PPO blends, iPS crystallized on draw. The morphology of drawn blends was studied by electron microscopy and wide-angle x-ray scattering.  相似文献   

7.
Extrudates of solid linear polyethylene prepared under proper pressure and temperature conditions have a high c axis orientation along the extrusion direction, with lamellar crystals and amorphous layers stacked alternately along the extrusion direction. Kink bands were formed by compressing the oriented extrudate at room temperature along the extrusion direction. Inspection of the kink bands by wide-angle and small-angle x-ray diffraction and electron microscopy revealed that the fiber axis was rotated from the original axis direction by 70–75° and that the lamellar crystals were inclined to the fiber axis in the kink band by 55–60° and stacked nearly parallel to the kink boundary. The superstructural change during the formation of the kink band could not be interpreted in terms of uniform c axis shear alone. In addition to such a mechanism, it was necessary to take into account intermicrofibril and/or intercrystallite slip.  相似文献   

8.
The crystal orientation of solid-state biaxially drawn solution-crystallized ultra-high-molecular weight polyethylene (UHMW-PE) film has been revealed from flat-plate wide-angle x-ray scattering (WAXS) patterns and interpreted in terms of crystal plasticity. A slightly drawn film (λ ≤ 3 × 3) possesses only a (100) planar orientation, whereas in a highly drawn film (λ ≥ 6 × 6), a mixed (100) and {110} planar orientation is present. Crystal deformation is found to proceed both by slip on (100) and {110} planes, resulting in a (100) texture in a similar way to crystal deformation in uniaxially drawn polyethylene and by {110} 〈110 〉 transverse slip and/or {310} twinning which results in a {110} texture. It is postulated that during transverse slip or twinning, the molecules deform without chain extension. As a consequence, neither the molecular draw ratio nor the tensile properties change significantly for macroscopic draw ratios above 10 in contrast to the data obtained for uniaxially drawn polyethylene.  相似文献   

9.
The thermal conductivity and thermal expansivity of a thermotropic liquid crystalline copolyesteramide with draw ratio λ from 1.3 to 15 have been measured parallel and perpendicular to the draw direction from 120 to 430 K. The sharp rise in the axial thermal conductivity Kpar; and the drastic drop in the axial expansivity α at low λ, and the saturation of these two quantities at λ > 4 arise from the corresponding increase in the degree of chain orientation revealed by wide-angle x-ray diffraction. In the transverse direction, the thermal conductivity and expansivity exhibit the opposite trends but the changes are relatively small. The draw ratio dependences of the thermal conductivity and expansivity agree reasonably with the predictions of the aggregate model. At high orientation, Kpar; of the copolyesteramide is slightly higher than that of polypropylene but one order of magnitude lower than that of polyethylene. In common with other highly oriented polymers such as the lyotropic liquid crystalline polymer, Kevlar 49, and flexible chain polymer, polyethylene, αpar; of the copolyesteramide is negative, with a room temperature value differing from those of Kevlar 49 and polyethylene by less than 50%. Both the axial and transverse expansivity show transitions at about 390 and 270 K, which are associated with large-scale segmental motions of the chains and local motions of the naphthalene units, respectively. ©1995 John Wiley & Sons, Inc.  相似文献   

10.
Nylon 6 filaments were drawn under high pressure. By means of wide-angle x-ray diffraction and differential scanning calorimetry, nylon 6 fibers were investigated after drawing at 80° C to a draw ratio of 3.75 and pressure in the range of atmospheric up to 2000 kg/cm2 It was found that by increasing the pressure, structural conversion from the γ-pseudohexagonal to the α-monoclinic form occurs, and that crystallinity and orientation are also increased.  相似文献   

11.
The rheological behavior and fiber spinning are investigated for the Celanese liquid crystal copolyester 30 mol% p-hydroxybenzoic acid and 70 mol% 2-hydroxy-6-naphthoic acid (designated as 30HBA/70HNA) with inherent viscosity 7.8 dL/g. Shear thinning viscosity, and yield stress are observed at low shear stress, which probably results from the existence of crystallites in the melt. The crystal-nematic melting point of the copolymer, as measured by differential scanning calorimetry, is around 309°C. Extrudates are collected at four different temperatures ranging from 315 to 345°C. Melt fracture and die swell are observed above 335°C at low shear stress. A wide-angle x-ray diffraction (WAXS) study of an annealed sample indicates that the abnormal phenomenon may be due to crystallites arising from blocky units of HNA. Fiber spinning is performed at high shear rate at 325 and 335°C. Flow is stable under these conditions. The spin draw ratio is the ratio of take-up velocity to the velocity of extrudate existing from the capillary. The initial modulus reaches a maximum at a fairly low spin draw ratio. Instron and wide-angle x-ray (WAXS) studies show that the mechanical properties and orientation are poor for the fiber spun near the crystal-nematic melting point. Also, thermal history is found to affect the rheological behavior. Heat treatment offibers, particularly those which are well oriented, brings an improvement of mechanical properties.  相似文献   

12.
This paper describes the properties of solid-state extruded polyethylene as a function of two primary processing variables, extrusion temperature, and area reduction. The polymer was extruded in sheet form, giving a material having an orthotropic mode of orientation. Property data are presented for melting temperature and heat of fusion; sonic modulus, yield stress, and elongation at fracture; small-angle x-ray scattering; optical absorption coefficient; and morphology for material etched by ion bombardment at liquid nitrogen temperature. Combining the present results with data previously reported in the literature, it is found that over the temperature range of about 90–120°C, where polyethylene can be successfully extruded to large area reductions, many properties of the extrudates show a surprisingly small dependence on extrusion temperature. A notable exception to this behavior is the elastic modulus, which increases significantly with increasing extrusion temperatures. In contrast to extrusion temperature, area reduction is found to have a major effect on nearly all properties of solid-state extruded polyethylene. In most cases, the form of this dependence is such that the properties change rapidly at small area reductions and much more slowly at large reductions.  相似文献   

13.
An experimental method using monochromatized synchrotron radiation for a wide-angle x-ray scattering study of polymers during phase transition and deformation is described. Results obtained on low-density and high-density polyethylenes and on polypropylene are given. Melting processes could be studied conveniently by making exposures during a temperature scan; a few seconds were found sufficient to obtain a diffraction spectrum. This way relatively fast crystallization processes and the structural change accompanying stress relaxation could be followed easily. The crystalline-amorphous ratio was found to decrease continuously much below the melting temperature measured dilatometrically and by DSC, implying that in the αc-relaxation transition region of polyethylene and polypropylene a structural change takes place. At the initial state of crystallization the 040 reflection in polypropylene was found to be stronger than the 110 one, while after crystallization has been completed this ratio was inverted. Equatorial spectra made after rapid uniaxial stretching of polypropylene sheet were found to exhibit a slight time dependence demonstrating that orientation went on after stretching had been stopped.  相似文献   

14.
The observation of chain conformation and mobility in polyethylene by solid-state 13C magic angle spinning (MAS) nuclear magnetic resonance (NMR) permits unambiguous identification and quantitative analysis of an intermediate phase. The carbon-carbon bonds in the intermediate phase adopt, on the average, an all-trans conformation and are more mobile than in the crystalline state (room temperature rate of reorientation ≈ 107 Hz). Comparisons of crystallinities by differential scanning calorimetry, wide-angle x-ray diffraction, and NMR support the high orientation of the intermediate phase and suggest a lower heat of fusion than for the crystals. Results from 13C spin-lattice relaxation and 1H spin diffusion show that the mass fractions are ≈ 20% and the domain sizes ≈ 36 Å. Both change with crystallization and annealing conditions. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Doubly oriented low-density polyethylene with parallel lamellae was compressed along the initial draw direction (i.e., at right angles to the lamellar surfaces) at 20°C. Wide- and low-angle x-ray diffraction were used to determine the changes in the molecular orientation and in the texture. During the compression, specimens previously annealed at or near 102°C were found to undergo changes in length, in long spacing, and in molecular orientation which were consistent with an (001) chain slip mechanism. In specimens annealed at higher temperatures x-ray diffraction indicated that during compression some series component of the long spacing was compressed by a much smaller amount than the remainder of the long spacing, which deformed by chain slip; in these cases it was found that the macroscopic strain along the compression axis (εy) was greater than the strain in the long spacing along that axis (εd). It is suggested that the missing strain which makes εy greater than εd is due to partial melting and the consequent development of amorphous regions between the stacks of lamellae.  相似文献   

16.
By means of electron microscopy of surface replicas and both small-angle and wide-angle x-ray scattering, nylon 6 fibers were investigated in the as-spun state, after drawing at 180°C to a draw ratio up to 4.95, and after subsequent annealing. As spun, the fiber exhibits a small fraction of row-nucleated cylindrites and a great many spherulites (with an average diameter of a few microns) side by side. Drawing deforms the spherulites into spindle-shaped structures (λ = 2) and subsequently produces well-aligned microfibrils. Small-angle x-ray scattering yields a two-point diagram at small λ and a fourpoint diagram at high λ. The long period seems to decrease slightly with draw ratio. Annealing at temperatures above the temperature of drawing increases the long period to a greater extent with samples of lower λ. The crystal lattice orientation is nearly complete at λ = 4.95.  相似文献   

17.
A new two‐stage draw technique was successfully applied to the superdrawing of polytetrafluoroethylene (PTFE) virgin powder. A film, compression‐molded from powder below the melting temperature (Tm = 335 °C), was initially solid‐state coextruded to an extrusion draw ratio (EDR) of 6–20 at 325 °C, about 10 °C below the Tm. These extrudates from the first‐stage draw were further drawn by a second‐stage pin draw in the temperature (Td) range of 300–370 °C that covers the static Tm. The maximum achievable total draw ratio was ~60 at a Td = 300 °C and increased rapidly with increasing Td, reaching a maximum of 100–160 at a temperature window between 340 and 360 °C, depending on the initial EDRs. At yet higher Td's, the ductility was lost as a result of melting. The high ductility of the PTFE extrudates at such high temperatures was ascribed to the improvement of interfacial adhesion and bonding between the deformed powder particles upon the first‐stage extrusion combined with the rapid heating of only a portion of the extrudate followed by the elongation at a high rate. The highly drawn fibers were highly crystalline (χc ≤ 87%) and showed high chain orientation (fc ≤ 0.997) and a large crystallite size along the chain axis (D0015 ≤ 160 nm). The molecular draw ratio, estimated from the entropic shrinkage above the Tm, was close to the macroscopic deformation ratio independently of the initial EDRs. These results indicate that the draw was highly efficient in terms of chain extension, orientation, and crystallization. Thus, the maximum tensile modulus and strength achieved in this work were 102 ± 5 and 1.4 ± 0.2 GPa, respectively, at 24 °C. These tensile properties are among the highest ever reported on oriented PTFE. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1995–2004, 2001  相似文献   

18.
The differential-scanning calorimetry (DSC) behavior of drawn linear polyethylene (LPE) has been investigated as a function of draw ratio and molecular weight. All the samples examined showed a dependence of the melting temperature on heating rate, an effect generally known as superheating. The magnitude of this effect, as well as the maximum melting temperatures, increased markedly at high draw ratio and high molecular weight. The highest melting temperature recorded was 145°C for a tape of draw ratio 25 and weight-average molecular weight of 312,000. The results were first considered in terms of the information which might be provided regarding crystal thickness. It was concluded that the DSC data are consistent with previous wide-angle x-ray diffraction results in confirming that an extended chain morphology similar to that observed in pressure crystallized LPE is not present in these samples. Secondly, the superheating effects were examined in the light of the possible configurational constraints on the amorphous regions of drawn polymers, along the lines proposed by Zachmann. It is possible to understand the effects of draw ratio and molecular weight very well on this basis, in a manner consistent with previous structural results on these materials.  相似文献   

19.
The effects of drawing temperature on the physical and mechanical properties of poly(p-phenylene sulfide) have been studied. A melt-quenched film was drawn by solid-state coextrusion both below (75°C) and above (95 and 110°C) the glass transition temperature Tg (85°C) of PPS. The maximum extrusion draw ratio (EDRmax) increased from 3.4 to 5.6 with increasing extrusion temperature Te from 75 to 110°C. It was found that extrusion drawing just above the Tg of PPS (95°C) produced more stress-induced crystals. A high efficiency of draw in the amorphous region was achieved by extrusion at Te-75°C. The tensile modulus at EDRmax decreased from 5.1 to 3.5 GPa with increasing Te from 75 to 110°C. The low efficiency of draw for the samples extruded at 110°C is explained in terms of disentanglement and chain slippage during drawing due to a less effective network.  相似文献   

20.
Polytetrafluoroethylene (PTFE) virgin powder was ultradrawn uniaxially by a two-stage draw. A film, compression molded from powder below the melting temperature (Tm), was initially solid-state coextruded to an extrudate draw ratio (EDR) of 6–20 at an established optimum extrusion temperature of 325°C, near the Tm of 335°C. These extrudates from first draw were found to exhibit the highest ductility at 45–100°C for the second-stage tensile draw, depending on the initial EDR and draw rate. The maximum achievable total draw ratio (DRt, max) was 36–48. Such high ductility of PTFE, far below the Tg (125°C) and Tm, is in sharp contrast to other crystalline polymers that generally exhibit the highest ductility above their Tg and near Tm. The unusual draw characteristics of PTFE was ascribed to the existence of the reversible crystal/crystal transitions around room temperature and the low intermolecular force of this polymer, which leads to a rapid decrease in tensile strength with temperature. The structure and tensile properties of drawn products were sensitive to the initial EDR, although this had no significant influence on DRt,max. The most efficient and highest draw was achieved by the second-stage tensile draw of an extrudate with the highest EDR 20 at 100°C, as evaluated by the morphological and tensile properties as a function of DRt. The efficiency of draw for the cold tensile draw at 100°C was a little lower than that for solid-state coextrusion near the Tm. However, significantly higher tensile modulus and strength along the fiber axis at 24°C of 60 ± 2 GPa and 380 ± 20 MPa, respectively, were achieved by the two-stage draw, because the DRt,max was remarkably higher for this technique than for solid-state coextrusion (DRt,max = 48 vs. 25). The increase in the crystallite size along the fiber axis (D0015), determined by X-ray diffraction, is found to be a useful measure for the development of the morphological continuity along the fiber axis of drawn products.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2551–2562, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号