共查询到20条相似文献,搜索用时 15 毫秒
1.
Ramn Lpez Jos A. Sordo Toms L. Sordo Paul von Ragu Schleyer 《Journal of computational chemistry》1996,17(7):905-909
Ab initio molecular orbital theory has been used to study the mechanism of the formation of C3H3+ from the reaction of CH3+ with acetylene. The highest level geometry optimizations and frequencies were computed at MP2-FC/6-31G**; single point energies of all the critical structures were computed to the MP4-FC/6-31G**//MP2-FC/6-31G** theory level. One of the three alternative transition structures leading to the formation of C3H3+ gives the cyclopropenyl cation and the other two the propargyl cation. The proportions of C3H2D+ and C3HD2+ obtained when CD3+ reacts with acetylene, and the composite nature of the metastable peak observed for the [C3H5]+→[C3H3]+ + H2 fragmentation are explained by assuming a different degree of deuterium scrambling depending on the energy of the system. © 1996 by John Wiley & Sons, Inc. 相似文献
2.
The reaction of O(1D) with CH4 was studied to determine the efficiency of H2 production in a direct process, and it was found to be 0.11 ± 0.02. Thus the two channels which account for all of the reaction between O(1D) and CH4 in the gas phase are 相似文献
3.
Goulay F Osborn DL Taatjes CA Zou P Meloni G Leone SR 《Physical chemistry chemical physics : PCCP》2007,9(31):4291-4300
The reactions of the ethynyl radical (C(2)H) with propyne and allene are studied at room temperature using an apparatus that combines the tunability of the vacuum ultraviolet radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory with time-resolved mass spectrometry. The C(2)H radical is prepared by 193-nm photolysis of CF(3)CCH and the mass spectrum of the reacting mixture is monitored in time using synchrotron-photoionization with a dual-sector mass spectrometer. Analysis using photoionization efficiency curves allows the isomer-specific detection of individual polyynes of chemical formula C(5)H(4) produced by both reactions. The product branching ratios are estimated for each isomer. The reaction of propyne with ethynyl gives 50-70% diacetylene (H-C[triple bond]C-C[triple bond]C-H) and 50-30% C(5)H(4), with a C(5)H(4)-isomer distribution of 15-20% ethynylallene (CH(2)=C=CH-C[triple bond]CH) and 85-80% methyldiacetylene (CH(3)-C[triple bond]C-C[triple bond]CH). The reaction of allene with ethynyl gives 35-45% ethynylallene, 20-25% methyldiacetylene and 45-30% 1,4-pentadiyne (HC[triple bond]C-CH(2)-C[triple bond]CH). Diacetylene is most likely not produced by this reaction; an upper limit of 30% on the branching fraction to diacetylene can be derived from the present experiment. The mechanisms of polyynes formation by these reactions as well as the implications for Titan's atmospheric chemistry are discussed. 相似文献
4.
The rate constant for the reaction CH3O2 + NO2 → (products) has been measured directly by flash photolysis and kinetic spectroscopy. At room temperature and at total pressures between 53 and 580 Torr, k3 = (9.2 ± 0.4) × 108 liter/mole sec so that the rate of formation of the probable primary product peroxymethyl nitrate (CH3O2NO2) may be significant in urban atmospheres. 相似文献
5.
The reaction of electronically excited singlet methylene (1CH2) with acetylene (C2H2) was studied using the method of crossed molecular beams at a mean collision energy of 3.0 kcal/mol. The angular and velocity distributions of the propargyl radical (C3H3) products were measured using single photon ionization (9.6 eV) at the advanced light source. The measured distributions indicate that the mechanism involves formation of a long-lived C3H4 complex followed by simple C-H bond fission producing C3H3+H. This work, which is the first crossed beams study of a reaction involving an electronically excited polyatomic molecule, demonstrates the feasibility of crossed molecular beam studies of reactions involving 1CH2. 相似文献
6.
Products of the gas-phase reactions of OH radicals with O,O-diethyl methylphosphonothioate [(C2H5O)2P(S)CH3, DEMPT] and O,O,O-triethyl phosphorothioate [(C2H5O)3PS, TEPT] have been investigated at room temperature and atmospheric pressure of air using in situ atmospheric pressure ionization mass spectrometry (API-MS) and, for the TEPT reaction, gas chromatography and in situ Fourier transform infrared (FT-IR) spectroscopy. Combined with products quantified previously by gas chromatography, the products observed were: from the DEMPT reaction, (C2H5O)2P(O)CH3 (21+/-4% yield) and C2H5OP(S)(CH3)OH or C2H5OP(O)(CH3)SH (presumed to be C2H5OP(O)(CH3)SH by analogy with the TEPT reaction); and from the TEPT reaction, (C2H5O)3PO (54-62% yield), SO2 (67+/-10% yield), CH3CHO (22-40% yield) and, tentatively, (C2H5O)2P(O)SH. The FT-IR analyses showed that the formation yields of HCHO, CO, CO2, peroxyacetyl nitrate [CH3C(O)OONO2], organic nitrates, and acetates from the TEPT reaction were <5%, 3+/-1%, <7%, <2%, 5+/-3%, and 3+/-2%, respectively. Possible reaction mechanisms are discussed. 相似文献
7.
The possible structures and isomerizations of H2C=C(OH)Li are studied theoretically by the gradient analytical method at RHF/6-31+G level. According to these results, reactions
of H2C=C(OH)Li with CH3
+ and CH
3
-
are investigated thoroughly. When H2C=C(OH)Li reacts with CH
3
+
, HzC=C(OH)Li firstly changes from structure1 to structure4, and then combines with CH3
+. In this reaction, the configuration of central carbon is retained. When H2C=C(OH)Li reacts with CH
3
-
, structure1 firstly breaks its C-O bond to give contact ion-pair. Then through transition state16 which is similar to structure2, the attack of CH
3
-
from the opposite side of-OH replaces-OH group and inverts the configuration of carbenoid carbon atom. All the results show that the ambident reactivity of carbenoid
has close relationship with the stability of special structures.
Project supported by the National Natural Science Foundation of China (Grant No. 29773025). 相似文献
8.
Ole J. Nielsen Matthew S. Johnson Timothy J. Wallington Lene K. Christensen Jesper Platz 《国际化学动力学杂志》2002,34(5):283-291
Pulse radiolysis techniques were used to measure the gas phase UV absorption spectra of the title peroxy radicals over the range 215–340 nm. By scaling to σ(CH3O2)240 nm = (4.24 ± 0.27) × 10?18, the following absorption cross sections were determined: σ(HO2)240 nm = 1.29 ± 0.16, σ(C2H5O2)240 nm = 4.71 ± 0.45, σ(CH3C(O)CH2O2)240 nm = 2.03 ± 0.22, σ(CH3C(O)CH2O2)230 nm = 2.94 ± 0.29, and σ(CH3C(O)CH2O2)310 nm = 1.31 ± 0.15 (base e, units of 10?18 cm2 molecule?1). To support the UV measurements, FTIR‐smog chamber techniques were employed to investigate the reaction of F and Cl atoms with acetone. The F atom reaction proceeds via two channels: the major channel (92% ± 3%) gives CH3C(O)CH2 radicals and HF, while the minor channel (8% ± 1%) gives CH3 radicals and CH3C(O)F. The majority (>97%) of the Cl atom reaction proceeds via H atom abstraction to give CH3C(O)CH2 radicals. The results are discussed with respect to the literature data concerning the UV absorption spectra of CH3C(O)CH2O2 and other peroxy radicals. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 283–291, 2002 相似文献
9.
10.
Conclusions It has been established that the rearrangement of (C2H5)3Si(CH2)2Cl2 radicals into (C2H5)2Si(CH3CH)(CH2)2CCl2H takes place by an intramolecular mechanism with 1,5-migration of a hydrogen atom. The rate constant for the isomerization has been determined at 20°C and found to be (2.2 ± 0.3)·103 sec–1.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2512–2516, November, 1988. 相似文献
11.
N2O was photolyzed at 2139 Å to produce O(1D) atoms in the presence of H2O and CO. The O(1D) atoms react with H2O to produce HO radicals, as measured by CO2 production from the reaction of OH with CO. The relative importance of the various possible O(1D )–H2O reactions is The relative rate constant for O(1D) removal by H2O compared to that by N2O is 2.1, in good agreement with that found earlier in our laboratory. In the presence Of C3H6, the OH can be removed by reaction with either CO or C3H6: From the CO2 yield, k3/k2 = 75,0 at 100°C and 55.0 at 200°C to within ± 10%. When these values are combined with the value of k2 = 7.0 × 10?13exp (–1100/RT) cm3/sec, k3 = 1.36 × 10?11 exp (–100/RT) cm3/sec. At 25°C, k3 extrapolates to 1.1 × 10?11 cm3/sec. 相似文献
12.
The potential energy surface for the reaction between OH and acetylene has been calculated using the RQCISD(T) method and extrapolated to the complete basis-set limit. Rate coefficients were determined for a wide range of temperatures and pressures, based on this surface and the solution of the one-dimensional and two-dimensional master equations. With a small adjustment to the association energy barrier (1.1 kcal/mol), agreement with experiments is good, considering the discrepancies in such data. The rate coefficient for direct hydrogen abstraction is significantly smaller than that commonly used in combustion models. Also in contrast to previous models, ketene + H is found to be the main product at normal combustion conditions. At low temperatures and high pressures, stabilization of the C2H2OH adduct is the dominant process. Rate coefficient expressions for use in modeling are provided. 相似文献
13.
Concentration-time profiles have been measured for hydroxyl radicals generated by the shock-tube decomposition of hydrogen peroxide in the presence of a variety of additives. At temperatures close to 1300°K the rate constants for the reaction are found to be in the ratio 0.18:0.19:0.59:1.00:2.33:2.88 for the additives CO:CF3H:H2:CH4:C2H4:C2H6, respectively. 相似文献
14.
15.
In this article, we discuss the reactions of i-C4H5 and n-C4H5 with acetylene. Both have been proposed as possible cyclization steps, forming benzene or fulvene, in rich flames burning aliphatic fuels. The relevant parts of the potential energy surface were determined from rQCISD(T) calculations extrapolated to the infinite-basis-set limit. Using this information in a Rice-Ramsperger-Kassel-Marcus-based master equation, we have calculated thermal rate coefficients and product distributions for both reactions as a function of temperature and pressure. The results are cast in forms that can be used in modeling, and the implications of the results for flame chemistry are discussed. 相似文献
16.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc. 相似文献
17.
18.
The ionization energies for methylene (CH2), methyl (CH3), ethynyl (C2H), vinyl (C2H3), ethyl (C2H5), propargyl (C3H3), and allyl (C3H5) radicals have been calculated by the wave-function-based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled-cluster level with single and double excitations plus a quasiperturbative triple excitation [CCSD(T)]. When it is appropriate, the zero-point vibrational energy correction, the core-valence electronic correction, the scalar relativistic effect correction, the diagonal Born-Oppenheimer correction, and the high-order correlation correction have also been made in these calculations. The comparison between the computed ionization energy (IE) values and the highly precise experimental IE values determined in previous pulsed field ionization-photoelectron (PFI-PE) studies indicates that the CCSD(T)/CBS method is capable of providing accurate IE predictions for these hydrocarbon radicals achieving error limits well within +/-10 meV. The benchmarking of the CCSD(T)/CBS IE predictions by the PFI-PE experimental results also lends strong support for the conclusion that the CCSD(T)/CBS approach with high-level energy corrections can serve as a valuable alternative for reliable IE determination of radicals, particularly for those radicals with very unfavorable Franck-Condon factors for photoionization transitions near their ionization thresholds. 相似文献
19.
The reaction of C2F5 radicals with H2S was studied over the range 1°?123°C using C2F5 radicals generated by photolysis of perfluoropropionic anhydride. The rate constant kH for reaction (2) is given by where θ = 2.303RT/cal mole?1. The relevance of this result to conflicting published data on the analogous reaction between CF3 radicals and H2S is discussed. It is concluded that there is little difference in the Arrhenius parameters for reaction of CF3 and C2F5 radicals with H2S. 相似文献
20.