首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions and Bridging of 1,2-Diaza-3-sila-5-cyclopentenes 1,2-Diaza-3-sila-5-cyclopentenes react with butyllithium to give lithium salts. In reactions of the lithium salts with halosilanes ( 1–7 ), trimethyltinchloride (8) or methyliodide ( 9 ) substituted compounds are obtained by LiHal elimination. Bromosuccinimide brominates the methylene group of the ring system ( 10 ). Bridging of 1,2-diaza-3-sila-5-cyclopentenes by boryl and silyl groups are described ( 11–13 ). In the reaction of trifluorophenylsilane with lithiated 1 , 2-tert.-butyl-4-lithio-3,3,5-trimethyl-4-fluorodimethylsilyl-1,2-diaza-3-sila-5-cyclopentene, which is stable in solution, a second substitution takes place ( 14 ). The thermal elimination of LiF from lithiated 1 leads to the formation of the spirocyclic compound 15 . The n.m.r. and mass spectra of the compounds are reported.  相似文献   

2.
Acyclic and Cyclic Silylhydrazones and Hydrazonylsilanes Dimethylketone-di-tert-butylmethylsilylhydrazone ( 1 ) is obtained in the reaction of the silylhydrazine and dimethylketone by condensation. Di-tert-butyldifluorosilane reacts with lithiated hydrazones to give fluorosilylhydrazones 2–4 , (CMe3)2SiF? NH? N = CRR′, ( 2 : R=Me, R′=CMe3; 3 : R,R′=CHMe2; 4 : R,R′=Ph). The bis(hydrazonyl)silane 5 , (CMe3)2Si(NH? N=CPh2)2, is formed in a molar ratio 1:2. Tris( 6 )- and tetrakis(hydrazonyl)silanes ( 7 ) are obtained from CMe3SiF3 ( 6 ), SiF4 ( 7 ), and lithiated tert-butylmethylketon-hydrazone. The lithium derivatives 8–11 are formed in the reaction of 1–4 with butyllithium. Bis(silyl)hydrazones ( 12–15 ) are the result of the reaction of halogensilanes and the lithium derivatives of 1(8), 2(9) and 3(10); 12 : (CMe3)2SiMe(CMe3SiF2)-N? N=CMe2, 13 : (CMe3)2MeSi(PhSiF2)N? N=CMe2, 14 : (CMe3)2SiF(Me3Si)N? N=C(Me)(CMe3), 15 : (CMe3)2SiF (SiMe3)N? N=C(CHMe2)2. Saltelimination out of 10 und 11 leads to the formation of the first bis(imino)-2,2,4,4-cyclodisilazanes, 16 :[(CMe3)2 SiN? N=C(CHMe2)2]2, 17 : [(CMe3)2SiN? N=CPh2]2. Cyclisation occurs in the reaction of 12 und 14 with tert-butyllithium, 2-silyl-1,2-diaza-3-sila-5-cyclopentenes ( 18 and 19 ) are formed. Dilithiated 1 reacts with SiF4 to give the spirocyclic compound 20 . HF-elimination from 18 and dimerisation of the intermediate diazasilacyclopentadiens lead to the formation of the tricyclus 21 .  相似文献   

3.
Stabilization of ? P?C〈 Bonds by Cyclic Silylhydrazones 1,2-Diaza-3-sila-5-cyclopentenes unsubstituted at the 4-position react after lithiation with halophosphanes and -arsanes to give 1 – 4 . The 4-methylated ring 5 reacts analogously with F2P? N(SiMe3)2 to give 6 , but exchanges the dimethylsilyl group of the ring in reaction with PCl3, to give 1,2-diaza-3-phospha-3,5-cyclopentadien 7 . The phosphaethenes 8 and 9 are formed from 4-trimethylsilylsubstituted lithiated rings by reaction with difluorophosphanes, F2PR (R = N(SiMe3) CMe3, N(SiMe3)2) and elimination of LiF and chlorosilane.  相似文献   

4.
2,2‐Difluor‐1,3‐diaza‐2‐sila‐cyclopentene – Synthesis and Reactions N,N′‐Di‐tert‐butyl‐1,4‐diaza‐1,3‐butadiene reacts with elemental lithium under reduction to give a dilithium salt, which forms with fluorosilanes the diazasilacyclopentenes 1 – 4 ; (HCNCMe3)2SiFR, R = F ( 1 ), Me ( 2 ), Me3C ( 3 ), N(CMe3)SiMe3 ( 4 ). As by‐product in the synthesis of 1 , the tert‐butyl‐amino‐methylene‐tert‐butyliminomethine substituted compound 5 was isolated, R = N(CMe3)‐CH2‐CH = NCMe3. 5 is formed in the reaction of 1 with the monolithium salt of the 1,4‐diaza‐1,3‐butadiene in an enamine‐imine‐tautomerism. 1 reacts with lithium amides to give (HCNCMe3)2SiFNHR, 6 – 12 , R = H ( 6 ), Me ( 7 ), Me2CH ( 8 ), Me3C ( 9 ), H5C6 ( 10 ), 2,6‐Me2C6H3 ( 11 ), 2,6‐(Me2CH)2C6H3 ( 12 ). The reaction of 12 with LiNH‐2.6‐(Me2CH)2C6H3 leads to the formation of (HCNCMe3)2Si(NHR)2, ( 13 ). In the presence of n‐BuLi, 12 forms a lithium salt which looses LiF in boiling toluene. Lithiated 12 adds this LiF and generates a spirocyclic tetramer with a central eight‐membered LiF‐ring ( 14 ), [(HCNCMe3)2Si(FLiFLiNR)]4, R = 2,6‐(Me2CH)2C6H3. ClSiMe3 reacts with lithiated 12 to yield the substitution product (HCNCMe3)2SiFN(SiMe3) R, ( 15 ). The crystal structures of 1 , 5 , 6 , 9 , 11 , 13 , 14 are reported.  相似文献   

5.
(Fluorosilyl)hydrazones are obtained from the reaction of lithiated hydrazones with fluorosilanes. On subsequent reaction with tert-butyllithium, cyclization takes place, to give 1,2-diaza-3-sila-5-cyclopentenes; this cyclization is favoured by the nitrogen-substituent of the hydrazone. The CH2 group of the heterocyclic compounds is a nucleophilic centre, at which further substitutions are possible. The mass spec- trum and 1H-, 19 F- and 29Si-NMR spectra are reported.  相似文献   

6.
1,2‐Diaza‐3‐silacyclopent‐5‐ene – Synthesis and Reactions The dilithium salt of bis(tert‐butyl‐trimethylsilylmethylen)ketazine ( 1 ) forms an imine‐enamine salt. 1 reacts with halosilanes in a molar ratio of 1:1 to give 1,2‐diaza‐3‐silacyclopent‐5‐enes. Me3SiCH=CCMe3 [N(SiR,R′)‐N=C‐C]HSiMe3 ( 2 ‐ 7 ). ( 2 : R,R′ = Cl; 3 : R = CH3, R′ = Ph; 4 : R = F, R′ = CMe3; 5 : R = F, R′ = Ph; 6 : R = F, R′ = N(SiMe3)2; 7 : R = F, R′ = N(CMe3)SiMe3). In the reaction of 1 with tetrafluorosilane the spirocyclus 8 is isolated. The five‐membered ring compounds 2 ‐ 7 and compound 9 substituted on the silicon‐fluoro‐ and (tert‐butyltrimethylsilyl) are acid at the C(4)‐atom and therefore can be lithiated. Experiments to prepare lithium salts of 4 with MeLi, n‐BuLi and PhLi gave LiF and the substitution‐products 10 ‐ 12 . 9 forms a lithium salt which reacts with ClSiMe3 to give LiCl and the SiMe3 ring system ( 13 ) substituted at the C(4)‐atom. The ring compounds 3 ‐ 7 and 10 ‐ 12 form isomers, the formation is discussed. Results of the crystal structure and analyses of 8 , 10 , 12 , and 13 are presented.  相似文献   

7.
Phenylated alkynes form 1,4-disila-cyclohexadienes (VIII–X) with thermally generated Me2Si (200°C). Bulky substituents (CMe3, SiMe3) prevent the addition. The strained cycloalkyne, 3,3,6,6-tetramethyl-1-thia-cycloheptyne-4 (XI), however, yields the known silirene XII (2,2,6,6,8,8-hexamethyl-8-sila-4-thia-bicyclo[5.1.0Δ1.7]octane); its transformation to the 1,4-disila-cyclohexadiene is prevented by steric effects. Thermally stable, 1,3-dienes give, depending on their substitution pattern, 1-sila-cyclopentenes-2 or -3. A mechanism is proposed giving the observed products via an initial 1,2-addition.  相似文献   

8.
Di-t-butylfluorosilylphenylphosphane (I) reacts with CMe3Li to give the lithium compound [(CMe3)2SiFLi(THF)2PC6H5]2 (II) and butane. The crystal structure of II has been determined. The SiP bond length (217.1 pm) in the eight-membered ring is extremely short. The SiP spin coupling constant (84.12 Hz) in II is remarkably large. LiF elimination from II leads to the formation of the four-membered (SiP) ring III. The bis(fluorosilyl)phosphane IV is formed in the reaction of II with Me2SiF2.  相似文献   

9.
Formation of a 14-Membered (SiNC4O)2 Heterocyclus – THF-Cleavage and Addition on the Si–N Bond Lithiated di-tert.-butylmethylsilylaminotrichlorosilane reacts with tetrahydrofurane with formation of the 14-membered heterocyclus 1 [(CMe3)2MeSi–N–SiCl2–O(CH2)4]2 and LiCl. The mechanism of the THF-cleavage is discussed and the results of the crystal structure of 1 are reported.  相似文献   

10.
Crystal Structure of Bis[lithium-tris(trimethylsilyl)hydrazide] and Reactions with Fluoroboranes, -silanes, and -phospanes Tris(trimethylsilyl)hydrazine reacts with n-butyllithium in n-hexane to give the lithium-derivative 1 . The reaction of 1 with SiF4, PhSiF3, BF3 · OEt2, F2BN(SiMe3)2 and PF3 leads to the substitution products 2–6 . The 1,2-diaza-3-bora-5-silacyclopentane 7 is formed by heating (Me3Si)2N? N(SiMe3)(BFNSiMe3)2 ( 5 ) at 250°C. In the reaction of (Me3Si)2N? N(SiMe3)PF2 ( 6 ) with lithiated tert.-butyl(trimethylsilyl)amine the hydrazino-iminophosphene (Me3Si)2N? N = P? N(SiMe3)(CMe3) ( 8 ) is obtained. In the molar ratio 2:1 1 reacts with SiF4 and BF3 · OEt2 to give bis[tris(trimethylsilyl)hydrazino]silane 9 and -borane 10 .  相似文献   

11.
O-Halogenosilyl-N,N-bis(trimethylsilyl)hydroxylamines – Synthesis, Crystal Structure, and Reactions The substitution of halogenosilanes on lithiated N,O-bis(trimethylsilyl)-hydroxylamine in the molar ratio of 1 : 1 occurs on the oxygen atom. The O-halogenosilyl-N,N-bis(trimethylsilyl)hydroxylamines were prepared: RSiF2ON · (SiMe3)2 (R = CMe3 1 , CHMe2 2 , CH2C6H5 3 , C6H2(CMe3)3 4 ), RR′SiFON(SiMe3)2 (R = CMe3, R′ = C6H5 5 ; R = Me, R′ = C6H5 6 ; R = C6H2Me3, R′ = C6H2Me3 7 ; R = CH2C6H5, R′ = CH2C6H5 8 ; R = CHMe2, R′ = CHMe2 9 ; R = CMe3, R′ = CMe3 10 ), RSiCl2ON(SiMe3)2 (R = CMe3 11 ; R = Cl 12 ). The reaction of fluorosilanes with lithiated N,O-bis(trimethylsilyl)hydroxylamine in the molar ratio of 1 : 2 leads to the formation of O,O′-fluorosilyl-bis[N,N-bis(trimethylsilyl)hydroxylamines]: RSiF[ON(SiMe3)2]2 (R = CMe3 13 ; R = C6H5 14 ). 13 could be prepared in the reaction of 1 with LiON(SiMe3)2. Lithiated dimethylketonoxime reacts with 1 to Me2C=NOSiRF–ON(SiMe3)2 [R = CMe3 ( 15 )]. The first crystal structure of a tris(silyl)hydroxylamine ( 4 ) is shown. The angle at the nitrogen prove a pyramidal geometry.  相似文献   

12.
Lithium Bis(silyl)amides and Tris(silyl)amines Synthesis and Crystal Structures Lithiated di-tert-butylfluorosilylamine reacts with difluorosilanes by substitution ( 1, 2 ). The siloxy-( 3, 4 ) and tert-butyloxy-( 5 )-silylamines are formed in reaction of 1 and 2 with LiOR (R = SiMe3, CMe3). The lithium derivatives of 3 and 4 are dimers forming an (LiFSiN)2-eight-membered ring ( 6, 7a ). Using 12 crown-4 the amide and the coordinated lithium are forming free ions ( 7 c ). The lithium derivative of 5 ( 8 ) crystallizes as a dimeric LiF-adduct of an iminosilane, forming a LiF-four-membered ring. In thf 7 reacts with Me3SiCl by a fluorine/chlorine exchange and 9 is obtained. In 9 lithium is coordinated with nitrogen, oxygen and two thf molecules, forming an (SiNOLi)-four-membered ring. 6 and 7 react with fluorosilanes to give tris(silyl)amines 10 – 12 .  相似文献   

13.

A reaction of bicyclic 2-sila-5-piperazinone, 2,2,4-trimethyl-1,4-diaza-2-silabicyclo-[4.3.0]nonan-5-one containing a proline moiety, and N-tosylglycine acyl chloride with subsequent hydrolysis of the primary unstable product to the intermediate disiloxane and its treatment with BF3?OEt2 furnished a first representative of pentacoordinate C,O-chelate halosilanes with a dipeptide fragment, namely, Ts—Gly—(S)-Pro—N(Me)CH2SiMe2F.

  相似文献   

14.
Amino‐ and halofunctional Siloxititanes Amino‐di‐tert‐butylsilanol reacts with tetrabutoxititane in a molar ratio of 2:1 to give di‐n‐butoxi(bis(di‐tert‐butyl‐n‐butoxi)siloxi)titane, (C4H9OSi(CMe3)2‐O)2Ti(OC4H9)2 ( 1 ), and lithium‐di‐tert‐butylchlorosilanolate in a molar ratio of 3:1 to give n‐butoxi(tris(di‐tert‐butyl‐n‐butoxi)siloxi)titane, (H9C4OSi(CMe3)2‐O)3TiOC4H9 ( 2 ). The amino‐di‐tert‐butylsilanol substitutes the four chloroatoms of TiCl4 in the presence of triethylamine as HCl‐acceptor. The tetrakis(amino‐di‐tert‐butyl)siloxititane ( 3 ) is formed. The lithium salt of di‐tert‐butylfluorosilanol reacts with TiCl4 in a molar ratio of 2:1 to give 1, 1, 3, 3‐tetra‐tert‐butyl‐1‐fluoro‐3‐trichlorotitoxi‐1, 3‐disiloxane, FSi(CMe3)2‐O‐Si(CMe3)2‐O‐TiCl3 ( 4 ). In the reaction of di‐tert‐butyl‐chlorosilanol and TiCl4, the anion [chlorosiloxi‐octa(tri‐μ2‐chlorotitanate)] ( 5 ) with protonated diethylether as counterion is obtained by using diethylether as HCl‐acceptor. The crystal structure determinations of 3 and 5 are reported.  相似文献   

15.
tert ‐Butyldiphenylsilylhydrazine – Precursors for Tetra(silyl)hydrazines, Silylhydrazones, and O‐Silylpyrazolones tert‐Butylchlorodiphenylsilane reacts with hydrazine in presence of triethylamine to give the mono(silyl)hydrazine Me3CSiPh2NHNH2 ( 1 ). The lithium derivative of 1 ( 1 a ) forms the N,N′‐bis(silyl)hydrazines 2 and 3 in the reaction with chlorosilanes. ( 2 : Me3CSiPh2NHNHSiPh2CMe3; 3 : Me3CSiPh2NHNHSiMe2CMe3). The monomeric dilithiumhydrazide 4 , (Me3CSiPh2)2N2Li2(THF)3, is obtained from 2 and the bimolar amount of C4H9Li in THF. 4 reacts with an excess of SiF4 to give the tetra(silyl)hydrazine 5 , Me3CSiPh2(SiF3)N–N(SiF3)SiPh2CMe3. 1 and ketones undergo condensation to silylhydrazones, Me3CSiPh2NHN=C(Me)R ( 6 : R = Me; 7 : R = CMe3), with elimination of H2O. Only one of the two possible isomers of 7 is formed. Cis/trans isomers ( 8 a , b ) are obtained in the analogous reaction of 1 and ethyl acetoacetate, Me3CSiPh2NH–N=CMe–CH2–COOEt ( 8 a , b ). 8 condenses thermally with elimination of EtOH and formation of the O‐silylpyrazolone 9 , Me3CSiPh2O–(C=N–NH–CMe=CH–). The results of the crystal structure analysis of the compounds 2 , 4 , and 7 are reported.  相似文献   

16.
The lithium salt of N,N′-bis(t-butyldimethylsilylhydrazine), CMe3SiMe2-NLiNHSiMe2CMe3, reacts with aminodifluoroboranes, Me3SiNRBF2 (R = CMe3, SiMe3) to give the N,N′-bis(silyl)-N-fluoroboryl-hydrazines I (R = CMe3) and II (R = SiMe3). The three-membered diazaboracyclopropanes III (R = CMe3) and IV (R = SiMe3) are obtained in the reaction of I and II with t-C4H9Li. According to crystal structure analysis of IV and NMR measurements, III and IV contain a planar NBN2 unit with C2 symmetry. The exocyclic BN bond of IV is 140.6(3) pm, the endocyclic BN bonds 142.6(3) pm and the angle in the BN2 ring 71.8(1)°.  相似文献   

17.
Synthesis of Bis- and Tris(trimethylsilyl)-methyl-aminofluorosilanes Lithium-tris(trimethylsilyl)methane reacts with fluoro-silanes to give (Me3Si)3C—SiF2R ( 1—3 , R = F, C6H5, CMe3). 1 and 2 react with lithiated amines to aminofluorosilanes 4 a, 5 a, 6 a , and with a 1, 3-migration of a silyl group to the structure isomeric trimethylsilylaminofluorsilanes 4 b, 5 b, 6 b, 7, 8 . The disubstituted NH-compound 9 is obtained in the reaction of 1 with LiNH2.  相似文献   

18.
Podand‐type ligands are an interesting class of acyclic ligands which can form host–guest complexes with many transition metals and can undergo conformational changes. Organic phosphates are components of many biological molecules. A new route for the synthesis of phosphate esters with a retained six‐membered ring has been used to prepare 2,2′‐[benzene‐1,2‐diylbis(oxy)]bis(5,5‐dimethyl‐1,3,2‐dioxaphosphinane) 2,2′‐dioxide, C6H4{O[cyclo‐P(O)OCH2CMe2CH2O]}2 or C16H24O8P2, (1), 2‐[(2′‐hydroxybiphenyl‐2‐yl)oxy]‐5,5‐dimethyl‐1,3,2‐dioxaphosphinane 2‐oxide, [cyclo‐P(O)OCH2CMe2CH2O](2,2′‐OC6H4–C6H4OH), (2), and oxybis(5,5‐dimethyl‐1,3,2‐dioxaphosphinane) 2,2′‐dioxide, O[cyclo‐P(O)OCH2CMe2CH2O]2, (3). Compound (1) is novel, whereas the results for compounds (2) and (3) have been reported previously, but we record here our results for compound (3), which we find are more precise and accurate than those currently reported in the literature. In (1), two cyclo‐P(O)OCH2CMe2CH2O groups are linked through a catechol group. The conformations about the two catechol O atoms are quite different, viz. one C—C—O—P torsion angle is −169.11 (11)° and indicates a trans arrangement, whereas the other C—C—O—P torsion angle is 92.48 (16)°, showing a gauche conformation. Both six‐membered POCCCO rings have good chair‐shape conformations. In both the trans and gauche conformations, the catechol O atoms are in the axial sites and the short P=O bonds are equatorially bound.  相似文献   

19.
Synthesis and Properties of Partially Silylated Tri- and Tetraphosphanes. Reaction of Lithiated Diphosphanes with Chlorophosphanes The reactions of Li(Me3Si)P? P(SiMe3)(CMe3) 1 , Li(Me3Si)P? P(CMe3)2 2 , and Li(Me3C)P? P(SiMe3)(CMe3) 3 with the chlorophosphanes P(SiMe3)(CMe3)Cl, P(CMe3)2Cl, or P(CMe3)Cl2 generate the triphosphanes [(Me3C)(Me3Si)P]2P(SiMe3) 4 , (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)2 6 , [(Me3C)2P]2P(SiMe3) 7 , and (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)Cl 8 . The triphosphane (Me3C)2P? P(SiMe3)? P(SiMe3)2 5 is not obtainable as easily. The access to 5 starts by reacting PCl3 with P(SiMe3)(CMe3)2, forming (Me3C)2 P? PCl2, which then with LiP(SiMe3)2 gives (Me3C)2 P? P(Cl)? P(SiMe3)2 11 . Treating 11 with LiCMe3 generates (Me3C)2P? P(H)? P(SiMe3)2 16 , which can be lithiated by LiBu to give (Me3C)2P? P(Li)? P(SiMe3)2 13 and after reacting with Me3SiCl, finally yields 5 . 8 is stable at ?70°C and undergoes cyclization to P3(SiMe3)(CMe3)2 in the course of warming to ambient temperature, while Me3SiCl is split off. 7 , reacting with MeOH, forms [(Me3C)2P]2PH. (Me3C)2P? P(Li)? P(SiMe3)2 18 , which can be obtained by the reaction of 5 with LiBu, decomposes forming (Me3C)2P? P(Li)(SiMe3), P(SiMe3)3, and LiP(SiMe3)2, in contrast to either (Me3C)2P? P(Li)? P(SiMe3)(CMe3) 19 or [(Me3C)2P]2PLi, which are stable in ether solutions. The Li phosphides 1 , 2 , and 3 with BrH2C? CH2Br form the n-tetraphosphanes (Me3C)(Me3Si)P? [P(SiMe3)]2? P(SiMe3)(CMe3) 23 , (Me3C)2P? [P(SiMe3)]2? P(CMe3)2 24 , and (Me3C)(Me3Si)P? [P(CMe3)]2? P(SiMe3)(CMe3) 25 , respectively. Li(Me3Si)P? P(SiMe3)2, likewise, generates (Me3Si)2P? [P(SiMe3)]2? P(SiMe3)2 26 . Just as the n-triphosphanes 4 , 5 , 6 , and 7 , the n-tetraphosphanes 23 , 24 , and 25 can be isolated as crystalline compounds. 23 , treated with LiBu, does nor form any stable n-tetraphosphides, whereas 24 yields (Me3C)2P? P(Li)? P(SiMe3)? P(CMe3)2, that is stable in ethers. With MeOH, 24 , forms crystals of (Me3C)2P? P(H)? P(SiMe3)? P(CMe3)2.  相似文献   

20.
1,2-Bis(trimethylsilyl)-3,4-di(tert-butyl) cyclotetraphosphane cis-P4(SiMe3)2(CMe3)2 1 could be prepared by the reaction of (Me3Si)2P—P(SiMe3)—P(SiMe3)CMe3 2 with (Me3C)PCl2 3 The compound 1 forms pale yellow crystals, m. p. 116°C. The 31P- and 1H-NMR data of 1 are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号