首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The condensation reaction rates of 7,9‐dioxo‐6,10‐dioxaspiro[4.5]decane with aromatic aldehydes in chloroform in the presence of piperidine has been investigated spectrophotometrically at 25–50 °C. The reaction follows overall second order kinetics, first order in each of the reactants and zero order with respect to piperidine. The rate of condensation increases with the presence of electron withdrawing groups on the aromatic ring of the aldehyde. From the dependence of the rate constants on temperature, activation parameters have been calculated. Plot of ΔH# versus ΔS# for the reaction gave a good straight line with an isokinetic temperature of 367.55 K. Based on this reaction, determination often aromatic aldehydes in a concentration range of 2.65–69.2 μg/mL is proposed.  相似文献   

2.
Condensation of 2-methyl-4-phenyl-thiazole ethiodide (1) with aromatic aldehydes in presence of piperidine as base catalyst has been studied kinetically at different temperatures. The rate in presence of low concentration of piperidine (<0.5M) is found to be represented by the third order equationv=k [1] [aldehyde] [piperidine]. On the other hand the rate in presence of 1.013M piperidine is represented by the second-order equation:v=k [1] [aldehyde]. It is concluded from the kinetic results that the dehydration step of the intermediate aldol compound is the rate determining step of the reaction. The dependence of the mechanism of the reaction and the thermodynamic parameters of activation on the molecular structure of the various aromatic aldehydes used is discussed. In various organic solvents, the rate of the reaction increases as the dielectric constant of the medium is increased. The energy of activation and the thermodynamic parameters of activation were calculated and discussed in terms of solvent properties.
Substituenten- und Lösungsmittel-Effekte auf die Geschwindigkeit der Reaktion zwischen 2-Methyl-4-phenylthiazol-ethiodid und substituierten Benzaldehyden
Zusammenfassung Die Kinetik dieser Kondensation wurde bei verschiedenen Piperidinkonzentrationen (basischer Katalysator), unter Variation der Temperatur und in Abhängigkeit von der Polarität des Lösungsmittels für verschiedene substituierte Benzaldehyde untersucht. Bei niedriger Piperidinkonzentration gehorcht die Reaktion einer Gleichung dritter Ordnung:v=k [Thiazo] [Ald.] [Pip.]; bei großer Konzentration (1.013M) gilt eine Gleichung zweiter Ordnung:v=k [Thizol] [Ald.]. Es wird ein Mechanismus vorgeschlagen, wobei der geschwindigkeitsbestimmende Schritt die Dehydratisierung des intermediär gebildeten Aldols ist. Aktivierungsenergien und andere thermodynamische Parameter wurden bestimmt und im Hinblick auf die Lösungsmittelpolarität diskutiert.
  相似文献   

3.
Kinetic studies were performed to investigate the mechanism of Schiff base formation in the reaction between aromatic aldehydes and 1,5‐diamino‐4,8‐dihydroxypyridazino[4,5‐d]pyridazine (DDPP). The studies were conducted at different temperatures with ethanol as solvent and acetic acid as catalyst. It is proposed that the first step involves the reaction of the aldehyde with a solvated proton (i.e. specific acid catalysis). Depending on the acidity of the medium, free or mono‐protonated (DDPP) at tacks the carbonyl group to form a carbinol‐amine inter mediate which then de hydrates to form the product. Plot of ΔH# versus ΔS# for the reaction gave a good straight line with isokinetic temperature of 343.15 K. Good linear relationship was obtained from the plot of log k against σ° values. The rate law derived from the proposed mechanism is in agreement with the experimental data and observations. The effects of meta and para substituents of benzaldehyde toward reactivity have been studied.  相似文献   

4.
2-Fluoro-5-nitrothiophene reacts with sodium thiophenoxide and piperidine much faster than other 2-halogeno-5-nitrothiophenes. In methanol the reactions with both nucleophiles follow overall second order kinetics, while in benzene the observed second order rate constants of the reaction with piperidine show a linear dependence by the piperidine concentration. Such a dependence, which is mild for the chloro, bromo and iodo derivative, becomes strong for the fluoro compound. Moreover, the reaction of 2-fluoro-5-nitrothiophene with [1-2H]piperidine shows the absence of a primary isotope effect. The results are interpreted within the framework of the two-stage, intermediate-complex mechanism, the first stage (attack of the nucleophile on the substrate) being rate determing for the reactions of 2-fluoro-, -chloro-, -bromo- and -iodo-5-nitrothiophene with thiophenoxide in methanol and of 2-chloro-, -bromo- and -iodo-5-nitrothiophene with piperidine in benzene. In the case of the reaction of 2-fluoro-5-nitrothiophene with piperidine in benzene the data are in agreement with a mechanism in which the rate determining step is the decomposition of the tetrahedral intermediate into products. The intervention of a second amine molecule in the transition state of the rate determining step can be rationalized in terms of bifunctional catalysis. A comparison of reactivity of thiophenoxide and piperidine towards 2-halogeno-5-nitrothiophenes (Hal = F, Cl, Br, I) indicates a greater sensitivity of the reaction with piperidine than that with thiophenoxide to the change of the leaving group.  相似文献   

5.
The condensation reaction of 2-thiobarbituric acid with aromatic aldehydes in ethanol has been investigated spectrophotometrically at 30-50°;C. The reaction was catalyzed by HCl solutions. The reaction follows overall second order kinetics, first order each in reactant. Activation parameters have been calculated from the dependence of the rate constants on temperature. The rate of condensation increases with the presence of electron donating groups on the aromatic ring of the aldehyde. The rate-determining step involves dehydration of the aldol intermediate. Based on this reaction, determination of 13 aromatic aldehydes in a concentration range of 0.149-76 mu;g/ml is proposed.  相似文献   

6.
The reaction kinetics for the oxidation of l ‐histidine by permanganate ions have been investigated spectrophotometrically in sulfuric acid medium at constant ionic strength and temperature. The order with respect to permanganate ions was found to be unity and second in acid concentration, whereas a fractional order is observed with respect to histidine. The reaction was observed to proceed through formation of a 1:1 intermediate complex between oxidant and substrate. The effect of the acid concentration suggests that the reaction is acid catalyzed. Increasing the ionic strength has no significant effect on the rate. The influence of temperature on the rate of reaction was studied. The presence of metal ion catalysts was found to accelerate the oxidation rate, and the order of effectiveness of the ions was Cu2+ > Ni2+ > Zn2+. The final oxidation products were identified as aldehyde (2‐imidazole acetaldehyde), ammonium ion, manganese(II), and carbon dioxide. Based on the kinetic results, a plausible reaction mechanism is proposed. The activation parameters were determined and discussed with respect to a slow reaction step.  相似文献   

7.
Oxidation of benzaldehyde and p-nitro-benzaldehyde by cerium(IV) sulphate in aqueous sulphuric acid is strongly catalyzed by iridium(III) chloride. The complex formed between cerium(IV) and the organic substrate in the first equilibrium step gives another complex in the presence of iridium(III), which ultimately gives the corresponding aromatic acids as the product of oxidation. The order of the reaction follows first-order kinetics at low concentrations to zero order at higher concentrations of both the oxidant and organic substrate. The rate is directly proportional to the concentration of catalyst, but decreases sharply with increasing H+ ions and cerium(III) concentrations, while change in ionic strength of the medium or the concentration of acetic acid and Cl ions has no effect on the rate.  相似文献   

8.
Kinetics of oxidation of six aliphatic aldehydes by Os(VIII) in alkaline solutions have been studied. The reaction is of first order with respect to each of the aldehyde and Os(VIII). The pseudo-first order rate constants decreased with an increase in the concentration of hydroxyl ions. The oxidation of deuterioacetaldehyde (MeCDO) exhibited a substantial primary kinetic isotope effect. Separate rate constants for the oxidation of hydrate and free aldehyde forms have been evaluated. The aldehyde hydrate is postulated as the active reductant. Ionic strength has no noticable effect on the rate. The rate-determining step is, therefore, postulated to be a bimolecular reaction between the aldehyde hydrate and [OsO4(OH)2]?2. The value of the limiting rate constant exhibited an excellent correlation with Taft σ* values; reaction constant being negative. A mechanism involving transfer of a hydride ion from the aldehyde hydrate to Os(VIII) has been proposed.  相似文献   

9.
Kinetics of base hydrolysis of some new heterocyclic azomethines derived from aminotriazol and aromatic aldehydes were investigated in the presence of NaOH in 60% (wt/wt) water-ethanol medium. The base hydrolysis of these Schiff bases is strictly first-order with respect to OH? and Schiff. The rate-determining step is suggested to be the attack of the hydroxide ion on the free base. Effect of the molecular structure of both aldehydes and amines and the nature of organic hydroxylic solvent on the hydrolysis rate was investigated and discussed.  相似文献   

10.
Outer‐sphere reduction of hexacyanoferrate(III) by some enolizable/nonenolizable aldehydes (viz., aliphatic, heterocyclic, and aromatic aldehydes) in alkaline medium has been studied spectrophotometrically at λmax = 420 nm. The reactions are first order each in [aldehyde] and [Fe(CN)63?]. The rate increases with an increase in [OH?] in the oxidation of aliphatic and heterocyclic aldehydes, whereas it is independent of [OH?] in the reaction with aromatic aldehydes. The intervention of free radicals in the reaction mixture was carried out using both acrylonitrile and acrylamide scavenger in two different experiments. The kinetic results indicate that the oxidation of benzaldehyde in aqueous medium proceeds at a slower rate than the aliphatic aldehydes (other than formaldehyde) and furfural. The values of third‐order rate constant (k3) at 308 K in the oxidations of some aliphatic aldehydes and furfural follow the order (CH3)2CH? > CH3CH2? > CH3? > C4H3O? > H? . The rate constants correlate with Taft's σ* value, the reaction constant being negative (–9.8). The pseudo–first‐order rate constants in the oxidations of benzaldehyde and substituted benzaldehydes follow the order ? NO2 > ? H > ? Cl > ? OCH3. The Hammett plot is also linear with a ρ value (0.6488) for meta‐ and para‐substituted benzaldehydes. The kinetic isotope effect for benzaldehyde (kH/kD = 1.93 at 303 K) was obtained. The rate‐determining step is the outer‐sphere formation of Fe(CN)64? and free radicals, which is followed by the rapid oxidation of free radicals by Fe(CN)63? to give products. The kinetic data and hence thermodynamic parameters have been used to distinguish enolizable and nonenolizable aldehydes. An attempt has also been made to correlate kinetic data with hydration equilibrium constants of some aliphatic aldehydes. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 494–505, 2012  相似文献   

11.
Refluxing of 1,3‐oxazolone ( 1a ) with malononitrile in dry benzene and in the presence of ammonium acetate afforded imidazolone derivative ( 2 ). However, carrying out the same reaction in absolute ethanol and in the presence of piperidine as a base gave the benzamide derivative ( 4 ). Fusion of ( 1a ) with p‐anisidine gave the open adduct benzamide ( 6 ), which cyclized in acidic medium to give imidazolone derivative ( 7 ). Heating of imidazolone ( 7 ) with malononitrile above its melting point afforded 1,3‐diazepine derivative ( 8 ). Reaction of the carbohydrazide ( 9 ) with isatin in ethanol gives the corresponding Schiff base ( 11 ), which then reacted with acetyl acetone, ethyl acetoacetate, ethyl cyanoacetate, and malononitrile in n‐butanol and piperidine to afford benzamide derivative ( 13 , 14 , 15 ) and ( 16 ), respectively. The structures of the newly synthesized compounds were established on the basis of IR, 1H‐NMR, mass spectra, and elemental analyses.  相似文献   

12.
Acid catalyzed poly(vinyl alcohol) (PVA) acetalization was investigated in aqueous medium at 80 °C for a PVA concentration of 8 wt %. The reactant, 10‐undecenal, was composed of a long alkyl chain with a vinyl end group, and the functionalization reaction was studied in heterogeneous media for low reactant concentrations (from 0.33 to 2.0 mol % compared with PVA hydroxyl groups concentration). First, the reaction was scrutinized with pentane‐2,4‐diol, as a model compound of PVA. Besides the expected reaction, the oxidation of the aldehyde into 10‐undecenoic acid in the presence of water was evidenced. This carboxylic acid appeared unreactive toward esterification of pentane‐2,4‐diol and PVA in water. Characterization of acetal stereochemical structure formed on the PVA backbone was performed by NMR spectroscopy in accordance to the model approach. A protocol based on 1H NMR analysis was developed to quantify grafted aldehyde, residual aldehyde, and created carboxylic acid through direct sampling of the reaction medium. Conversions and reaction rate constants were calculated for pH ranging from 1 to 3. Finally, the acetalization yield was found to be enhanced at low pH and, in such conditions, the oxidation reaction contribution was limited. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 661–671  相似文献   

13.
The oxidation of tyrosine by chromium(VI) in aqueous perchloric acid medium has been studied spectrophotometrically at 30 °C and at a constant ionic strength I = 3.10 mol dm−3. The main reaction products were identified as chromium(III) and 4-hydroxyphenylacetaldehyde. The stoichiometry is 2:3, i.e., two moles of chromium(VI) react with three moles of tyrosine. The reaction is first order with respect to both chromium(VI) and tyrosine. Increase in perchloric acid concentration increased the rate of reaction. The order with respect to acid concentration was found to be two. Added products, ionic strength and dielectric constant of the medium did not have any significant effect on the reaction rate. A suitable mechanism is proposed. The activation parameters were determined with respect to the slow step of the mechanism. The thermodynamic quantities were also determined and discussed.  相似文献   

14.
In aqueous solution, many biochemical reaction pathways involve reaction of an aldehyde with an amine, which progresses through generally unstable, hydrated and dehydrated, Schiff base intermediates that often are unobservable by conventional NMR. There are 4 states in the relevant equilibrium: 1) gem‐diol, 2) aldehyde, 3) hemiaminal, and 4) Schiff base. For the reaction between protein amino groups and DOPAL, a highly toxic metabolite of dopamine, the 1H resonances of both the hemiaminal and the dehydrated Schiff base can be observed by CEST NMR, even when their populations fall below 0.1 %. CEST NMR reveals the quantitative exchange kinetics between reactants and Schiff base intermediates, explaining why the Schiff base NMR signals are rarely observed. The reactivity of DOPAL with Nα‐amino groups is greater than with lysine N?‐amines and, in the presence of O2, both types of Schiff base DOPAL–peptide intermediates rapidly react with free DOPAL to irreversibly form dicatechol pyrrole adducts.  相似文献   

15.
The manganese(II) catalysed oxidation of glycerol by cerium(IV) in aqueous sulphuric acid has been studied spectrophotometrically at 25 °C and I = 1.60 mol dm−3. Stoichiometry analysis shows that one mole of glycerol reacts with two moles of cerium(IV) to give cerium(III) and glycolic aldehyde. The reaction is first order in both cerium(IV) and manganese(II), and the order with respect to glycerol concentration varies from first to zero order as the glycerol concentration increases. Increase in sulphuric acid concentration, added sulphate and bisulphate all decrease the rate. Added cerium(III) retards the rate of reaction, whereas glycolic aldehyde had no effect. The active species of oxidant and catalyst are Ce(SO4)2 and [Mn(H2O)4]2+. A mechanism is proposed, and the reaction constants and activation parameters have been determined.  相似文献   

16.
The reaction of peroxomonosulfate (PMS) with glycolic acid (GLYCA), an alpha hydroxy acid, in the presence of Ni(II) ions and formaldehyde was studied in the pH range 4.05–5.89 and at 31°C and 38°C. When formaldehyde and Ni(II) ions concentrations are ~5.0 × 10?4 M to 10.0 × 10?4 M, the reaction is second order in PMS concentration. The rate is catalyzed by formaldehyde, and the observed rate equation is (?d[PMS])/dt = (k2[HCHO][Ni(II)][PMS]2)/{[H+](1+K2[GLYCA])}. The number of PMS decomposed for each mole of formaldehyde (turnover number) is 5–10, and the major reaction product is oxygen gas. The first step of the reaction mechanism is the formation of hemiacetal by the interaction of HCHO with the hydroxyl group of nickel glycolate. The peroxomonosulfate intermediate of the Ni‐hemiacetal reacts with another molecule of PMS in the rate‐limiting step to give the product. This reaction is similar to the thermal decomposition of PMS catalyzed by Ni(II) ions. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 642–649, 2009  相似文献   

17.
The kinetics of the oxidation of some Fe(II)–Tris Schiff base complexes by peroxydisulfate was studied spectrophotometrically in the aqueous medium and in the organic–aqua binary mixture. The inspected complexes were derived from the condensation of 2‐acetylpyridine and substituted benzylamines. The oxidation reaction of the studied complexes was followed at 303 K under pseudo–first‐order conditions. It was found that the oxidation reaction by S2O82? consists of two steps. The first step is the formation of an ion pair from the reactants, and the second step is an electron transfer from the metal center to the peroxydisulfate oxidant, with an associated peroxo bond fissure. A mechanism, based on the experimental results, was proposed, and the rate law was derived. The effect of organic solvent on the reaction rate was studied in the presence of different ratios (v/v) of methanol–water and acetone–water mixtures. Moreover, the changes in the activation barrier from water to water–methanol and water–acetone mixtures were estimated from the kinetic data. The transfer chemical potentials of the initial and transition states from water into mixed solvents were determined from solubility measurements. Solvent effects on the reaction rate were discussed in terms of initial state versus transition state solvation.  相似文献   

18.
 The food dye tartrazine is oxidized with peroxydisulfate in the absence and in the presence of Ag(I) and Fe(III) catalysts. In the absence of these metal ions, the reaction shows second-order kinetics, first-order in each of the reacting species. With the Ag(I) ion in the medium the reaction proceeds considerably faster, but still follows second-order kinetics. The reaction rate depends on the concentration of Ag(I) and S2O8 2−, but is independent of the concentration of the substrate. When Fe(III) acts as the catalyst, a marked enhancement in the reaction rate is observed, and the reaction proceeds through two parallel pathways, the catalyzed and the noncatalyzed. The catalyzed path follows third order kinetics, being first-order in substrate, oxidant, and catalyst concentration. Mechanisms of the noncatalyzed as well as the Ag(I) and Fe(III) catalyzed reaction systems are proposed.  相似文献   

19.
The kinetics of ruthenium(III) catalyzed oxidation of atenolol by diperiodatocuprate(III) in aqueous alkaline medium at a constant ionic strength of I = 0.10 M has been studied spectrophotometrically at 27°C. The reaction between diperiodatocuprate(III) and atenolol in alkaline medium in presence of ruthenium(III) exhibits 2: 1 stoichiometry (atenolol: diperiodatocuprate(III)). The main products were identified by spot test, IR, NMR, and LC-MS. The reaction is of first order in DPC concentrations and has less than unit order in both ATN and alkali concentrations. The order in ruthenium(III) was unity. Intervention of free radicals was observed in the reaction. Increase in periodate concentration decreases the rate. The oxidation reaction in alkaline medium has been shown to proceed via a ruthenium(III)-atenolol complex, which reacts with monoperiodatocuprate(III) in a rate determining step followed by other fast steps to give the products. Probable mechanism is proposed and discussed. The activation parameters with respect to the slow step of the mechanism and thermodynamic quantities were determined and discussed.  相似文献   

20.
The water-soluble triosmium cluster [Os3(CO)9(μ-η2-(4-CHO)C9H5N)(μ-H)(P(OCH2CH2N(CH3)3I)3)] (4) was tested for its reactivity with plasmid DNA. In contrast to the band retardation previously observed with a related series of positively charged clusters, an intensification and retardation of three discrete bands was observed with increasing cluster concentration. In order to further investigate the apparent modification of DNA by 4, its interaction with a 22-oligomer (sequence 5′-AGT TGT GGT GAC TTT CCC AGG C-3′) was examined. Incubation with this oligonucleotide (pH 7.4 in Tris-HCl buffer and 100 mM NaCl) followed by HPLC analysis revealed the formation of three dose dependent products assigned as covalent modifications at three sites of the oligonucleotide. Incubation of 4 with 32P-ATP labeled oligonucleotide at the 5′-end followed by treatment with piperidine and comparison with the standard Maxam-Gilbert sequencing protocol products revealed only general background cleavage, indicating that the modification products are piperidine labile and suggesting that the modification involved formation of a Schiff base. An alternative approach was then pursued which involved annealing the 4-oligonucleotide products with their complementary strand and treatment of the resulting duplex DNAwith the exonuclease, Exo III. This assay indicated three exonuclease stops, consistent with the three products observed by HPLC whose electrophoretic mobility approximately matched guanine containing fragments when compared with the Maxam-Gilbert sequencing lanes. Reduction of the 4-oligonucleotide products with borohydride reducing agents, followed by treatment with piperidine, resulted in the formation of one product (by HPLC) with the same electrophoretic mobility as the AGTT fragment based on comparison with the Maxam-Gilbert sequencing lanes. This product most likely results from reduction of an initially formed Schiff base adduct (to the corresponding amine) with the guanine of the TGT fragment of the oligonucleotide, and corresponds to the most stable of the three Schiff base adducts detected by HPLC and by incubation with the exonuclease. The other two products are less stable and competitive reduction of the free aldehyde functionality on the cluster in equilibrium with these adducts precludes their detection after treatment with the reducing agents. The formation of the Schiff base adduct is further corroborated by the model reaction of [Os3(CO)10(μ-η2-(4-CHO)C9H5N)(μ-H)] (4′) with acetylated guanine in nonaqueous solvents where disappearance of the aldehyde resonance and the appearance of several new resonances in the 6-9 ppm region of the 1H NMR of the reaction mixture is noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号