首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Replicas of fracture surfaces of fractions of linear polyethylene, which were crystallized at elevated temperatures for extended time periods, were examined by electron microscopy. Striated. lamella-type crystallites were observed for all molecular weights over the range 3.2 × 103?5.7 × 105. In agreement with Anderson's previous report, for molecular weights of 12,000 or less, the crystallite thicknesses were comparable to the extended chain length. As the molecular weight increased above this level, however, the crystallite sizes increased only slightly and hence at high molecular weights were very much smaller than the extended chain length. From the measured melting temperatures, crystallite interfacial free energies were calculated from the theory for the melting of finite size crystals comprised of chains of finite length. The crystallite interfacial free energy was found to increase with molecular weight. Based on these results, a crystallization process is outlined which allows for the formation of either extended chain crystallites, or crystallites whose size is much smaller than the extended chain length without any change in nucleation mechanism or arbitrary adjustment in growth mechanism with molecular weight.  相似文献   

2.
The crystalline morphology, or supermolecular structure, of poly(ethylene oxide) has been studied as a function of molecular weight and crystallization conditions. Molecular weight fractions, covering the range 6 × 103 to 1 × 107 are used over the range of accessible temperatures for isothermal crystallization as well as for a large set of controlled nonisothermal crystallization conditions. A morphological map is constructed from these studies and compared with the literature results. Prior reports were primarily confined to low molecular weights, which restricted the generalization of the findings. In the present work, as a consequence of the extended molecular weight range, conditions are established for the systematic development of several different, well-defined, organized super-molecular structures as well as for highly crystalline but disorganized systems. Strong similarities are found between the results for poly(ethylene oxide) and previous reports for linear polyethylene. A generalization for all chain molecules is suggested.  相似文献   

3.
Electron microscope studies are reported for crystals of linear polyethylene formed in dilute solution from very sharp low molecular weight fractions. Emphasis is placed on molecular weights in the range of 1.1 × 103 to 15.1 × 103. The dependence of the crystal habit on the crystallization temperature is very similar to that which has been found for the higher molecular weight species. However, the demarcation temperature for the crystallization of the different morphological forms is very molecular weight-dependent. The conditions under which interfacial dislocation networks form can be clearly defined. The molecular weight must be less than 3000, so that these structures are restricted to very small chain lengths. However, not all crystallization conditions within this allowable molecular weight range yield such dislocations. The formation of interfacial dislocation networks are shown to occur only under very special circumstances. Their occurrence clearly cannot be offered as evidence, as has been done in the past, for a regular, chain-folded interfacial structure.  相似文献   

4.
分子量对聚丙烯等温结晶的影响   总被引:3,自引:0,他引:3  
<正> 在高聚物结晶动力学的研究中,分子量对结晶速率的影响是一个有实际意义和理论兴趣的研究课题,由于聚烯烃可以得到分子量变化范围相当宽(MW从10~3到10~6)的试样,因而它是研究结晶速率分子量依赖性较合适的对象,其中研究最多的是聚乙烯和聚丙烯。从前入的研究报道看来,影响聚丙烯结晶速率的因素比聚乙烯要复杂。除了聚丙烯可生成多种晶型结构,会影响其结晶速率以外,用不同聚合方法制备的试样,由于其链结  相似文献   

5.
The effects of molecular weight and temperature on crystallization processes at low tempera-ture for cis-1,4 polybutadiene prepared with rare-earth catalyst (Ln-PB) have been studied by WAXDmethod. In the range of molecular weight from  相似文献   

6.
Two linear polyethylene fractions (Mη, 11,260 and 100,000) and mixtures of these fractions have been isothermally crystallized from the melt under pressures up to 3000 atm. Characterization of individually crystallized fractions with transmission electron microscopy indicates that pressure can be used to produce a crystallite whose thickness is a measure of the chain length within it. Although the high molecular weight fraction yields spherulites containing individually varying lamellae thicknesses, the maximum thickness of each lamella is a measure of the chain length within it. Both electron micrographs and differential thermal analysis results show that crystallization of homogeneous mixtures of the high and low molecular weight fractions under high pressure results in a distinct fractionation and segregation according to molecular weight.  相似文献   

7.
The lattice parameters of a series of monoclinic metallocene poly(propylenes) of constant molecular weight are measured as a function of defect content, that vary between 0.3 and 2.35 total defects per 100 monomeric units. The parameters are also measured as a function of molecular weight for a fixed defect content and as a function of the crystallization temperature. The b axis is found to increase with decreasing isothermal crystallization temperature whereas only small changes are found for samples rapidly crystallized. The a and c axis showed basically no variation with crystallization temperature. The parameters of the unit cell were essentially constant with varying defect content in the poly(propylene) chain. Lack of observed effect on the dilation of the unit cell by increasing defects is a consequence of the rapid crystallization required to ensure formation of monoclinic crystals. The unit cell parameters increased as a mild function of the molecular weight. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2511–2521, 1997  相似文献   

8.
Previous work on the small-angle light scattering of polyethylene films, to determine the supermolecular structure, has been continued. One of the main efforts has been the study of a binary mixture whose low molecular weight component forms well defined spherulites and whose high molecular weight component yields a poorly defined rod-like morphology. The addition of the high molecular weight fraction causes a progressive deterioration of the initial spherulitic morphology; a relatively small amount of the high molecular weight species causes a major decrease in the spherulitic size. However, there are no indications of any spherulitic structures when the weight fraction of the high molecular weight species is 0.5 or greater. The isothermal crystallization of a fraction M = 6.6 × 105 was also studied. Spherulites were formed at low crystallization temperatures while at the higher crystallization temperatures the morphology became nondistinct. Preliminary studies with solvents indicate that high molecular fractions, which do not form spherulites when crystallized in the pure state, do so when crystallized from highly swollen solutions.  相似文献   

9.
Measurements of flow birefringence of cellulose tricarbanilates were carried out on nine fractions (0.27 × 105 < M ≤ 12 × 105) in a temperature range of 55–110°C, with benzophenone as a matching solvent (dn/dc = 0). The ratio of Maxwell constant to intrinsic viscosity, which has been found to be independent of molecular weight for the limiting case of Gaussian molecules, is successfully interpreted as a function of molecular weight in terms of the recent theory of Gotlib and Svetlov (based on the wormlike chain model of Kratky and Porod). From the measurements at 55°C a number of 36.6 monomer units per random link is deduced. This is in accord with results of small-angle x-ray scattering. For the extinction angle curves a clear transition is observed from rodlike to statistical molecules when the molecular weight is increased. At high molecular weights the master curves obtained for anionic polystyrenes and cellulose tricarbanilates coincide. Implications of this observation on the kinetic stiffness of the cellulose tricarbanilate chain are discussed. The intrinsic viscosity-molecular weight relationship is considered. From a comparison with the results of the theory of Eizner and Ptitsyn it is concluded that the cellulose tricarbanilate chain must be highly solvated in benzophenone.  相似文献   

10.
The dependence of crystalline morphology of isotactic polypropylene crystallized from dilute solutions on its molecular weight and growing conditions and the mechanism of crystal growth were studied by electron microscopy and electron diffraction. Lathshaped lamellar crystals 150–300 A. in thickness are obtained from fractionated polypropylene powders of M w (average molecular weight) = 600,000 and 240,000, but not from the samples of M w = 82,000 and 44,000, by means of isothermal crystallization at 130°C. for 20 hr. in dilute α-chloronaphthalene solution (0.005 wt.-%). Precipitation of the fractionated polypropylene sample of M w = 82,000 from a dilute solution of carbitol gives typical dendritic crystals under the same isothermal crystallizing conditions as mentioned above. The mode of chain folding in these crystals based on the orientation and the crystal structure of the lamellar crystals agrees with that proposed by Sauer, Morrow, and Richardson. From the morphological observations, the mechanism of growth pertinent to polypropylene lamellar crystals is presumed to be as follows: fibrils at first aggregate, then the molecular chains are folded to form small lamellae, and then these small lamellae accumulate compactly to grow to large, lath-shaped, lamellar crystals.  相似文献   

11.
Replica and thin-section electron microscopy was performed on a linear polyethylene fraction (Mw = 1.89 × 105, Mn = 1.79 × 10 5) which was either isothermally crystallized or quenched at difference temperatures. The results are numerically analyzed in such a manner so as to give the distribution of the total long spacing and of the crystallite and amorphous thicknesses. The quantitative information about the maximum and minimum values for these parameters at each crystallization temperature yields important clues as to possible molecular processes involved. Qualitative information regarding general morphology, molecular tilt with respect to the lamellar surface, and possible crystallographic faults are also discussed.  相似文献   

12.
Synchrotron small angle X‐ray scattering (SAXS), wide angle X‐ray scattering (WAXS), and transmission electron microscopy were carried out for an oriented polyethylene‐block‐[atactic poly(propylene)] with a molecular weight of 1.13×105 and a volume fraction of polyethylene of 0.5. Isothermal crystallization at 93°C did not destroy the pre‐formed microdomain, however, with a higher crystallization temperature, the microdomain was more heavily deformed and more crystalline lamella grew. In WAXS profiles, preferential orientation of (020) reflection peak was observed, indicating that the crystalline lamella grew in parallel with the micro domain interface.  相似文献   

13.
In bulk polymerization and copolymerization of trioxane with ethylene oxide, it has been shown that p-chlorophenyldiazonium hexafluorophosphate is a superior catalyst as compared to boron trifluoride dibutyl etherate (BF3 · Bu2O). Polymers and copolymers of significantly higher molecular weight have been obtained. The higher molecular weight has been attributed primarily to less inherent chain transfer during propagation, which in turn can be attributed to the superior gegenion PF6?. The polymerization proceeds via a clear period followed by sudden solidification. Faster polymerization and higher molecular weight polymers have been observed for homopolymerization than for copolymerization. The polymer yield obtained after solidification is determined by both rate of polymerization and rate of crystallization of polymers. These rates, in turn, are dependent on the catalyst concentration. The molecular weight is determined both by polymer yield and extent of inherent chain transfer. In the range of monomer to catalyst mole ration [M]/[C] = (0.5–20) × 104 investigated, it has been found that in the higher range, the polymer yield is independent of the catalyst concentration and the extent of inherent chain transfer is inversely proportional to the half power of catalyst concentration: [M]/[C] = (0.5–8) × 104 for homopolymerization and (0.5–3) × 104 for copolymerization with 4.2 mole % ethylene oxide. In the lower range, the yield decreases with catalyst concentration and the extent of inherent chain transfer is inversely proportional to higher power of catalyst concentration. The dependence of molecular weight of polymers on catalyst concentration has been shown to be a complex one. The molecular weight goes through a maximum as the catalyst concentration is decreased. The maximum molecular weights have been obtained at [M]/[C] ≈ 8 × 104 for homopolymerization and ~3 × 104 for copolymerization with 4.2 mole % ethylene oxide. Prior to reaching maximum the molecular weight is inversely proportional to the half power of catalyst concentration indicating it is primarily controlled by inherent chain transfer. Upon further decrease of catalyst, molecular weight decreases as a result of both a decrease in polymer yield and an increase in inherent chain transfer. In copolymerization of trioxane and ethylene oxide, it has been ascertained that methylene chloride exhibits a favorable solvating effect. Although higher inherent chain transfer takes place in copolymerization than in homopolymerization, the extent of chain transfer is independent of ethylene oxide concentration. The difference in polymer yield and molecular weight a t different ethylene oxide concentrations is attributed primarily to the difference in kp/kt ratio. It also has been demonstrated that end capping of polymer chains can be accomplished by the use of a chain transfer agent—methylal.  相似文献   

14.
The influence of the thermal history on the morphology and mechanical behavior of PET was studied. The degree of crystallinity (density measurements) and the morphological structure (electron microscopy and small-angle x-ray diffraction) depend on the crystallization temperature. The viscoelastic parameters obtained from the modulus–temperature curves are mainly determined by the morphology of the samples. The glass-transition temperature, Ti, is a function of the crystallinity and the crystallization temperature. It is maximum for a crystallinity between 0.34 and 0.39 for a sample crystallized isothermally between 120 and 150°C. This dependence on crystallization conditions is ascribed to the conformation of the amorphous chain segments between the crystalline lamellae as well as the concentration and the molecular weight of the polymer material rejected during isothermal crystallization. Both factors are supposed to be temperature-dependent. The value of the rubbery modulus is a function of both the volume concentration of the crystalline lamellae and the structure of the interlamellar amorphous regions (chain folds, tie molecules, chain ends, and segregated low molecular weight material). Annealing above the crystallization temperature of isothermally crystallized samples has a marked influence on their morphology and mechanical behavior. The morphological structure and the viscoelastic properties of annealed PET samples are completely different from those obtained with samples isothermally crystallized at the same temperature.  相似文献   

15.
The orientation of the crystallographic c axis (chain axis) was followed by x-ray diffraction during the crystallization of four samples of isotactic polystyrene differing in elongation ratio. The crystallite orientation can be expressed by 〈cos2 χc〉, where χc is the angle between the c axis and the stretching direction. The degrees of crystallinity w were estimated from the diffraction data by using density for calibration. It was found that 〈cos2 χc〉 decreases in a linear manner with crystallinity, the rate of decrease being very small when the elongation ratio α is 5, but becoming progressively larger as α is decreased toward unity. A qualitative measure suggests that amorphous orientation decreases during crystallization at a rate which is nearly independent of α. The variation of 〈cos2 χc〉 with w is therefore governed by the orientation of the statistical chain segments prior to crystallization. If the elongation ratio is small, the supply of well oriented statistical segments is limited, and 〈cos2 χc〉 will decrease at a rapid rate during crystallization. A treatment due to Krigbaum and Roe permits evaluation of the ratio, ν/N, where ν and N are the average numbers of statistical segments in the crystallization nucleus of critical size, and in a network chain, respectively. Our polystyrene samples were not crosslinked, so chain entanglements must serve as junction points. Values of ν could not be obtained, since N was unknown. However, the (ν/N) ratio for isotactic polystyrene decreases slowly with α, and the values agree reasonably well with those obtained in a previous study of oriented polychloroprene networks. After nearly complete crystallization (ω ca. 0.30), the long period spacing measured by low angle diffraction was approximately 135 Å, and varied only slightly with elongation ratio in the range α = 1 to 5. It therefore appears that chain folded lamellae are present in both drawn and undrawn samples of isotactic polystyrene.  相似文献   

16.
The concentration of water in purified and BaO-dried α-methylstyrene was found to be 1.1 × 10?4M. The radiation-induced bulk polymerization of the α-methylstyrene thus prepared was studied in the temperature range of ?20°C to 35°C. The polymerization rate varied as the 0.55 power of the dose rate. The theoretical molecular weights and molecular weight distribution were calculated from a proposed kinetic scheme and these values were then compared with those found experimentally. The agreement between these two was reasonably close, and therefore it was concluded that, from the molecular weight distribution point of view, the proposed kinetic scheme for the cationic polymerization of α-methylstyrene is an acceptable one. The rate constant for chain transfer to monomer kf changed with temperature and was found to be responsible for the decrease in the molecular weight of the polymer with increase in temperature. kf and kp at 20°C were found to be 0.95 × 104 l./mole-sec and 0.99 × 106 l./mole-sec, respectively.  相似文献   

17.
用小角X-射线散射,广角X-射线衍射,差示扫描量热法,研究了HE-1型钛系催化剂异相聚合超高分子量聚乙烯的稀溶液的结晶和熔融结晶的熔点,熔化热,结晶度,长周期,晶区厚度和非昌区厚度随分子量与结晶温度的关系.并着重讨论了熔融结晶和初生态结晶的不同过程机理.结果表明:UHMWPE稀溶液结晶的结晶度(Xc%),长周期(L)和晶区厚度(Lc)与分子量Mw无关,随结晶温度升高而增加,非晶区厚度(La)与分子量和结晶温度均无关,熔点Tm随分子量增大稍有升高.熔融结晶样品长周期与分子量无关,却和结晶温度和时间有关.其结晶度和晶区厚度随分子量增大而下降,非昌区厚度和熔点均随分子量增大而增大,初生态粉末中没发现长周期,却发现有较高熔点.  相似文献   

18.
用小角X-射线散射,广角X-射线衍射,差示扫描量热法,研究了HE-1型钛系催化剂异相聚合超高分子量聚乙烯的稀溶液的结晶和熔融结晶的熔点,熔化热,结晶度,长周期,晶区厚度和非晶区厚度随分子量与结晶温度的关系,并着重讨论了熔融结晶和初生态结晶的不同过程机理,结果表明:UHMWPE稀溶液结晶的结晶度(X%),长周期(L)和晶区厚度(Lc)与分子量Mw无关,随结晶温度升高而增加,非晶区厚度(La)与分子量  相似文献   

19.
The effect of molecular weight of poly(ε‐caprolactone) (PCL) on the formation and stability of inclusion complexes (ICs) between α‐cyclodextrin (α‐CD) and PCL was investigated by FTIR, WAXD, and DSC measurements. ICs between α‐CD and PCLs with a wide range of number‐average molecular weight, Mn = 1.21 × 104 – 1.79 × 105, were prepared by mixing the aqueous solution of CD and acetone solution of PCL followed by stirring at 60 °C for 1h and at the room temperature for 1 day. FTIR, WAXD, and DSC measurement showed the PCL chains were included into the α‐CD cavity, and the crystallization of PCL was suppressed in the α‐CD cavity. Stoichiometry and yield of each IC varied with the molecular weight of guest PCL, and the effect of IC formation on the crystallization behaviour of guest polymer decreased with the increase of molecular weight of guest polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1433–1440, 2005  相似文献   

20.
A linear polyurethane of high molecular weight was prepared in solution by the polyaddition of equimolar amounts of ethylene glycol and methylene bis(4-phenyl isocyanate). The polymer was fractionated by using a direct sequential extraction procedure, with a solvent–nonsolvent system consisting of N,N′-dimethylformamide (DMF) and acetone (A). The resulting fractions were characterized by viscosity and lightscattering measurements. The relationship between the intrinsic viscosity and molecular weight was found in DMF at 25°C. to be [η] = 3.64 × 10?4M0.71. The unperturbed polymer chain dimensions were determined from intrinsic viscosity measurements carried out under experimentally determined theta conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号