首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xyloglucan is a type of hemicellulose with a cellulose backbone containing (1→6)-α-xylose or (1→2)-β-galactoxylose as a side chain. It is soluble in water. Its aqueous solution forms a gel or gel-like precipitate by addition of Congo red. Xyloglucan gel structures with various concentrations of Congo red were observed by small angle X-ray scattering (SAXS) at the nano-level. SAXS results indicated that the xyloglucan chains interacted with Congo red, and that an increase of concentration of Congo red induced a characteristic cross-linking domain, which consisted of a flat structure containing stacked xyloglucan chain assemblies. The Congo red molecules are inserted between the xyloglucan chains.  相似文献   

2.
The larger photobiological activity of visnagin (VI) versus khellin (KH) toward several living organisms, including fungi, viruses, yeasts and bacteria, induced a detailed investigation of the photophysical properties of these naturally occurring furanochromones, using laser-flash-photolysis, photoacoustic calorimetry and fluorescence (steady-state and time-resolved) techniques in solvents with different polarity and content of water, including micelles and vesicles. The results have shown that the magnitude of all the three rate constants out of S1 (radiative, kf; internal conversion, kic and intersystem crossing, kisc) for VI and KH strongly depend on the solvent, namely on its hydrogen bonding ability and polarity. The changes of kf and kisc are due to the solvent-assisted mixing and/or inversion of the two first singlet excited states (1n,π* and 1π,π*), while kic increases with a decrease of the So–S1 energy gap. As a consequence, the quantum yield of triplet formation (φT) strongly decreases from values of ?0.8 in dioxane to < 0.05 in water for both compounds. The magnitude of solvent polarity/hydrogen bonding ability required, at which the state order is inverted and φT starts to decrease, is greater for VI than for KH and consequently φT (VI) > φT (KH) over a broad range of water content including that appropriate to the environment of the compounds in a living system. These facts account for the larger photobiological activity of VI with respect to KH, regarding both the fungus Fusarium culmorum L. and the wild strain of Escherichia coli, studied by us.  相似文献   

3.
用溶胶-凝胶方法制备了苯乙烯、马来酸酐和r-缩水甘油丙基醚三甲氧基硅烷复合材料.利用红外光谱、动态力学分析、小角X-射线散射和原子力显微镜等手段研究了这种材料的结构与性能.结果表明,这种材料以三维网络和纳米微相分离的形式存在,其力学性能和耐热性能较苯乙烯-马来酸酐共聚物有大幅度提高,透明且不溶于丙酮.  相似文献   

4.
用溶胶-凝胶方法制备了苯乙烯、马来酸酐和r-缩水甘油丙基醚三甲氧基硅烷复合材料.利用红外光谱、动态力学分析、小角X-射线散射和原子力显微镜等手段研究了这种材料的结构与性能.结果表明,这种材料以三维网络和纳米微相分离的形式存在,其力学性能和耐热性能较苯乙烯-马来酸酐共聚物有大幅度提高,透明且不溶于丙酮.  相似文献   

5.
The shrinking mechanism of comb-type grafted poly(N-isopropylacrylamide) gel was investigated by fluorescence spectroscopy and small-angle X-ray Scattering (SAXS). The SAXS reveals that the microdomain structure with characteristic dimension of 460 Å is developed in the comb-type grafted poly(N-isopropylacrylamide) gel during the shrinking process. Fluorescence spectroscopy together with SAXS observation suggests that the freely mobile characteristics of the grafted chains are expected to show the rapid dehydration to make tightly packed globules with temperature, followed by the subsequent hydrophobic intermolecular aggregation of the dehydrated graft chains. The dehydrated grafted chains created the hydrophobic cores, which enhance the hydrophobic aggregation of the networks. These aggregations of the NIPA chains contribute to an increase in void volume, which allow the gel having a pathway of water molecules by the phase separation.  相似文献   

6.
A mono‐lancunary keggin‐type decatungstosilicate (SiW11) polyoxometalate (POM) modified by γ‐aminopropyltriethoxysilane (KH550) was incorporated into polyimide (PI) through copolymerization. Nuclear magnetic resonance (NMR), fourier transition infrared spectroscopy (FTIR), and wide angle X‐ray diffraction (WAXD) were used to characterize the structure and composition of the polyoxometalate–organosilane hybrid (SiW11KH550) and PI/SiW11KH550 copolymers. The differential scanning calorimetry (DSC) studies indicate that the glass transition temperature (Tg) of PI/SiW11KH550 copolymers increases from 330°C (for neat PI) to 409°C (for the copolymer sample with 10 wt% of SiW11KH550). Dielectric measurement showed that both the dielectric constant and the dielectric loss for the copolymer thin films decreased with the increase in SiW11KH550 content, and the dielectric constant and dielectric loss values decreased to 2.1 and 3.54 × 10?3, respectively, for the copolymer sample with 10 wt% of SiW11KH550. The incorporation of SiW11KH550 into polymer matrices is a promising approach to prepare PI films with a low dielectric constant and low dielectric loss. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
 The analysis of the interaction of micelles formed by a blockcopolymer is given by means of small-angle X-ray (SAXS) and small-angle neutron scattering (SANS). The blockcopolymer consists of poly(styrene) and poly(ethylene oxide) (molecular weight of each block: 1000 g/mol) and forms well-defined micelles (weight-association number: 400, weight-average diameter: 15.4 nm) in water. The internal structure has been studied previously (Macromolecules 29:4006 (1996)) by SAXS. There it has been shown that the micelles are spherical objects. The structure factor S(q) as a function of the scattering vector q (q=(4π/λ) sin (θ/2); λ: wavelength of the radiation in the medium; θ: scattering angle) can be extracted from both sets of small-angle scattering data (SANS: q≤0.4 nm-1; SAXS: q≤0.6 nm-1). It is shown that particle interaction in the present system can be described by assuming soft interaction which is modeled by a square-step potential. Received: 12 May 1997 Accepted: 9 July 1997  相似文献   

8.
The aim of this study is to elucidate the structure and investigate the antimicrobial activity of an ulvan obtained by water extraction from green seaweed Ulva reticulata collected at Nha Trang sea of Vietnam by using IR, NMR, SEC-MALLS and SAXS methods. The ulvan is composed of rhamnose, galactose, xylose, manose and glucose (mole ratio Rha: Gal: Xyl: Man: Glu = 1:0.12:0.1:0.06:0.03), uronic acid (22.5%) and sulphate groups (17.6%). Chemically structural determination showed that the ulvan mainly composed of disaccharide [→4)β-D-GlcA(1→4)α-L-Rha3S-(1→]. The results from SAXS indicated that ulvan under study has a rod-like bulky chain conformation. Ulvan from U. reticulata showed high antimicrobial activity, with inhibition zone diameter of 20 mm against Enterobacter cloace and 18 mm against Escherichia coli.  相似文献   

9.
An alkaline exchange membrane (AEM) based on an aminated trimethyl poly(phenylene) is studied in detail. This article reports hydroxide ion conductivity through an in situ method that allows for a more accurate measurement. The ionic conductivities of the membrane in bromide and carbonate forms at 90 °C and 95% RH are found to be 13 and 17 mS cm−1 respectively. When exchanged with hydroxide, conductivity improved to 86 mS cm−1 under the same experimental conditions. The effect of relative humidity on water uptake and the SAXS patterns of the AEM membranes were investigated. SAXS analysis revealed a rigid aromatic structure of the AEM membrane with no microphase separation. The synthesized AEM is shown to be mechanically stable as seen from the water uptake and SAXS studies. Diffusion NMR studies demonstrated a steady state long-range diffusion constant, D of 9.8 × 10−6 cm2 s−1 after 50–100 ms. © 2012 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1743–1750, 2013  相似文献   

10.
The effect of varying sample preparation parameters on the thermal behavior and on the small-angle x-ray scattering (SAXS) properties of a polyether polyurethane were investigated. The polyurethane studied was a methylene bis(p-phenyl isocyanate) (MDI)/butanediol/poly(tetramethylene oxide) (PTMO) system synthesized in a 6/5/1 mole ratio by a two-step solution polymerization. The PTMO had a nominal molecular weight of 2000. The samples were compression molded under different conditions for the SAXS experiments. The preparation parameters studied included molding time and temperature, sample thickness, and quenching rate from the molding temperature. The molding temperature has the greatest effect on the SAXS data. In this case the domain size was observed to increase as the molding temperature increased from 130 to 200°C. The thermal properties were also found to be strongly dependent on the molding temperature, as measured by differential scanning calorimetry (DSC). An endotherm related to the annealing that occurs during the molding process appears in each sample near the molding temperature. The other preparation parameters have little or no effect on the SAXS and thermal properties of this sample.  相似文献   

11.
True model linear poly(styrene‐b‐dimethylsiloxane) PS‐b‐PDMS copolymers were synthesized by using sequential addition of monomers and anionic polymerization (high‐vacuum techniques), employing the most recent experimental procedures that allow the controlled polymerization of each monomer to obtain blocks with controlled molar masses. The model diblock copolymers obtained were analyzed by using different techniques, such as size‐exclusion chromatography, 1H NMR, Fourier transform infrared spectroscopy, small angle X‐rays scattering (SAXS), and wide angle X‐rays scattering (WAXS). The PS‐b‐PDMS copolymers obtained showed narrow molar mass distribution and variable PDMS content, ranging from 2 up to 55 wt %. Compacted powder samples were investigated by SAXS to reveal their structure and morphology changes on thermal treatment in the interval from 30 to 200 °C. The sample with the highest PDMS content exhibits a lamellar morphology, whereas two other samples show hexagonally packed cylinders of PDMS in a PS matrix. For the lowest PDMS content samples, the SAXS pattern corresponds to a disordered morphology and did not show any changes on thermal treatment. Detailed information about the morphology of scattering domains was obtained by fitting the SAXS scattering curves. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3119–3127, 2010  相似文献   

12.
We prepared two block copolymers 1 and 2 consisting of a third‐generation dendron with poly(ethylene oxide) (PEO) peripheries and a linear polystyrene (PS) coil. The PS molecular weights were 2000 g/mol and 8000 g/mol for 1 and 2 , respectively. The differential scanning calorimetry (DSC) data indicated that neither of the block copolymers showed glass transition, implying that there was no microphase separation between the PEO and PS blocks. However, upon doping the block copolymers with lithium triflate (lithium concentration per ethylene oxide unit = 0.2), two distinct glass transitions were seen, corresponding to the salt‐doped PEO and PS blocks, respectively. The morphological analysis using small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) demonstrated that a hexagonal columnar morphology was induced in salt‐doped sample 1‐Li+ , whereas the other sample ( 2‐Li+ ) with a longer PS coil revealed a lamellar structure. In particular, in the SAXS data of 2‐Li+ , an abrupt reduction in the lamellar thickness was observed near the PS glass transition temperature (Tg), in contrast to the SAXS data for 1‐Li+ . This reduction implies that there is a lateral expansion of the molecular section in the lamellar structure, which can be interpreted by the conformational energy stabilization of the long PS coil above Tg. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2372–2376, 2010  相似文献   

13.
Wang  Jia-Yao  Li  Yong-Jin  You  Ji-Chun  Bian  Feng-Gang 《高分子科学》2022,40(6):631-641

In this work, phase segregation and localization of PBSU have been investigated with the combination of SAXS and DSC in its blend with PVDF. After stepwise crystallization of PVDF and PBSU, there are double melting peaks of PBSU in DSC and double scattering peaks in SAXS. It has been demonstrated that double peaks can be attributed to the localization of PBSU in interlamellar/interfibrillar region in pre-formed PVDF crystal framework. In the case of low content of PBSU in blend, PBSU is trapped into the interlamellar region of PVDF crystals, resulting in the alternating lamellae crystal of them and the first peak (with low-q) in SAXS. The enhanced confinement effect produces thinner PBSU lamellae, corresponding to the lower melting temperature in DSC. Upon increasing its content in blend, some PBSU segregates in interfibrillar regions in addition to the enrichment in interlamellar regions of PVDF crystal framework. The larger space and higher concentration of PBSU in interfibrillar-regions contribute to periodic lamellae structure of PBSU with higher thickness, which is the reason for the second peak (with high-q) in SAXS and DSC. Our results not only clarify the relationship between localization of PBSU in interlamellar/interfibrillar regions and double peaks in DSC/SAXS, but also provide a novel strategy to detect the interlamellar and interfibrillar segregation of low-Tm component in miscible crystalline/crystalline blend.

  相似文献   

14.
Small-angle X-ray scattering (SAXS) experiments and molecular dynamic modelling of the mesomorphic organisation of hexa-n-pentoxy-2,3,6,7,10,11-triphenylene are reported. Simulated SAXS patterns extracted from molecular dynamic simulations account for the fact that despite a perfect organisation of the columns in a 2D hexagonal array, in most case, SAXS patterns show only the fundamental diffraction peak with a limited number of higher order reflections.  相似文献   

15.
A set of isothermally melt-crystallized polyethylene samples was examined using small-angle x-ray scattering (SAXS). Time and temperature of crystallization were the variable parameters used to create the set of samples. Following background subtraction, desmearing, and application of the Lorentz factor to the raw SAXS data it is possible to see many orders of reflection. This suggests that much higher degrees of order are present in isothermally melt-crystallized samples than had previously been thought possible. A combination of SAXS and DSC data indicates that there is no evidence for isothermal thickening in these samples. This study, coupled with data obtained from PE single crystals, produced information concerning the extrapolation of single-crystal data to fit bulk systems. In addition, the equilibrium melting point T determined is somewhat lower than previously claimed. This study also suggests that the surface energy of the mature crystals is always lower than that of the nucleated state and/or the nucleation factor Kσen increases with decreasing supercooling.  相似文献   

16.
The true electric actuation thickness strain of poly (styrene‐b‐ethylbutylene‐b‐styrene) (SEBS) gel was measured using an in situ synchrotron SAXS. The thermoplastic elastomer SEBS gel was microphase‐separated to form a disordered styrene micelle nanostructure in an oil‐swollen ethylbutylene matrix. The SEBS gel showed reversible cyclic load–unload compression behavior without permanent residual strain. The electromechanical strain of the SEBS gel with carbon paste electrodes could be evaluated by means of a nanostructure dimensional change traced by using the in situ synchrotron SAXS during actuation. The strain measured with SAXS was compared with the strain measured using conventional laser displacement sensor systems. The optical laser sensor method was likely to overestimate the thickness strain due to the bending movement of the dielectric elastomer. To our knowledge, the thickness strain value measured by the synchrotron SAXS is the closest to the true strain ever measured in the field of dielectric elastomer studies, because the nanostructure dimensional change depends on the thickness dimension change, not on the translational movement like the bending motion. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

17.
Small‐angle X‐ray scattering (SAXS) was used to obtain solution parameters of a weak polyelectrolyte in water in the absence of any additives, such as neutralizing agents or salt. Poly(acrylic acid) (PAA) was used as a weak polyelectrolyte from which SAXS data were obtained in the dilute region of 1–10 mg cm?3. An intrinsic viscosity of 15.7 dL g?1 was obtained from a plot of reciprocal reduced viscosities versus the concentration. The application of the SAXS data, that is, the contour length (L = 1.97 × 104 Å), the persistence length (a* = 58.5 Å), and the molecular weight (M = 5.9 × 105 Da), to the Yamakawa–Fujii equation suggested that PAA in water at 25 °C could be described as a wormlike chain having a cylindrical body of d = 6 Å. An end‐to‐end distance (r = 1.6 × 103 Å) was calculated from r = 2a*L ? 2(a*)2. The nonisotropic expansion factor (α = 2.9) was calculated for PAA expanding from the random coil in dioxane at 30 °C (Θ temperature) to the wormlike chain in water at 25 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1263–1272, 2003  相似文献   

18.
We previously reported the water-induced micelle formation of copoly(oxyethylene-oxy-propylene-oxyethylene), Pluronic L64, in o-xylene. The micellar properties could be controlled by varying the water to EO ratio (Z) in micelles. in micelles. In this paper, laser light scattering, transient electric birefringence (TEB), and synchrotron small-angle x-ray scattering (SAXS) were used to study the micellar structure at different Z values. Both TEB and SAXS results further confirmed the micellar shape transition from that of a sphere to a nonspherical shape. A comparison between TEB and dynamic light-scattering results as well as the SAXS experiments showed an ellipsoidal shape for micelles when Z > 1.3 with the oblate being the more reasonable form for fitting all the experimental parameters. The degree of asymmetry appeared to be not high. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Small-angle x-ray scattering (SAXS) intensity for the lamellar structure of polymeric materials has been formulated with consideration of structural defects such as the finiteness of the lamellar stack, the lamellar bend, and the paracrystalline distortions. In particular, the effects of the lamellar bend on the SAXS profile have been elucidated on the basis of Vonk'xss formula γ1(x) – γ(x)exp(?2x/d). Here, the scattering profile due to the lamellar bend is shown to be expressed by a Cauchy function. The integral breadth is equal to 2π/d, being independent of the order of scattering. As an example of the SAXS analysis based on the theory, the characterization of the lamellar structure in the “hard” elastic polypropylene films is reported. The long period and the lamellar thickness are evaluated from the correlation function, and the distortion length and Hosemann's g factor are estimated according to the procedure presented here. On the basis of these structural parameters, the relationship between the manufacturing process and the lamellar structure of the polypropylene films is discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Time-resolved and off-line synchrotron wide-angle and small-angle x-ray scattering (WAXS and SAXS) was used to study the structure formation in poly-p-phenylenebenzobisoxazole (PBO) fibers during various stages of spinning, coagulation, and heating processes. WAXS data could be explained in terms of liquid-crystalline structures of varying degrees of order. A structure model is proposed that is in accordance with the observed SAXS four-point pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号