首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas Phase Intercalation of Graphite by SbCl4F Gas Phase Intercalation of Graphite by SbCl4F using a two-zone technique is a method to prepare intercalation compounds of different stage index n in temperature range between 120 and 140°C. The reaction is a process of successive decrease of stage index. Increasing the reaction time, i. e. concentration, regions of pure stages alternate with two-phase regions. Intercalation compounds were characterized by X-ray technique, EPMA, and chemical methods. The compounds are stable in ordinary air, with aqueous HCl as well as KOH only pentavalent but not any trivalent antimony can be removed. The identity periods along c-axis in pure stages are Ic = 9.33 Å (n = 1), 12.72 Å (n = 2), 16.06 Å (n = 3) and 19.40 Å (n = 4). A (√7 × √ 7) 19.1° in-plane structure of intercalants was found. The uptake curve of mass with time reveals a discontinuity connected with formation of stage 2. Concave shape of curve during starting period at 120 and 125°C will be interpreted as a consequence of an induction time. From X-ray and EPMA studies it may be concluded that nucleation at the prismatic crystal edges controls the kinetics of reaction. Assuming a first order kinetics of filling the vacant sites, the same activation energy in case of formation of stage 1 and stage 2 have been determined approximately (97 and 102 kJ/mol).  相似文献   

2.
Studies on Polyhalides. III. Crystal Structures of [Cu(NH3)4I2 · I2] and [Cu(NH3)4I3]I3 Tetramminecopper(II)tetraiodide [Cu(NH3)4I2 · I2] (I) crystallizes monoclinically in the space group C2/m with a = 1 185.9 pm, b = 892.8 pm, c = 656.8 pm, β = 111.10° and Z = 2 formula units. Tetramminecopper(II)hexaiodide [Cu(NH3)4I3]I3 (II) crystallizes orthorhombically in the space group Pnnm with a = 874.9 pm, b = 1 089.8 pm, c = 885.3 pm, and Z = 2 formula units. A special feature of these structures are coordinated polyiodide ions I42? (I) or I3? (II). In both compounds four coplanar nitrogen atoms and two axial iodine atoms form a quasi-octahedral coordination around copper with the usual (4+2)-tetragonal distortion. The copper ions are connected by linear, centrosymmetric polyiodide ions I42? (I) or I3? (II). Therefore infinite planar zigzag chains of units [Cu(NH3)4I4] (I) or [Cu(NH3)4I3]+(II) are resulting. The counterion I3? (II) is intercalated between these chains.  相似文献   

3.
Isothiocyanate Complexes of Copper(II) with Square-Planar and Tetragonal-Pyramidal Coordination: Structure, Phase Transitions, and Redox-Properties In dependence on the kind and size of the counter-cations Cu2+-ions form isothiocyanate complexes with different coordination number and geometry. The structures of compounds with square-planar coordination [(NEt4)2[Cu(NCS)4] · CHCl3 (brown): Space group 14/mmm, Z = 2; a = 1204.3(2) pm, c = 1154.2(3) pm] and with tetragonal-pyramidal polyhedra [(NEt4)3[Cu(NCS)5] · SM (green, SM: unidentified solvent molecule): Space group P21/c, Z = 4; a = 1154.2(6) pm, b = 2291.6(10) pm, c = 1739.9(9) pm, ß = 95.98(5)°] are reported. The green complex transforms into a brown compound at room-temperature; the transformation is (partly) reversibly. Solutions of NCS-anions and Cu2+ are redox unstable. The structure of a resulting product: (PPh4)2[Cu2(NCS)2] [Space group C2/c, Z = 4; a = 1235.4(1) pm, b = 1347.1(2) pm, c = 2953.4(11) pm, ß = 99.36(2)°] with Cu(I) dimers and two bridging NCS- ligands is also reported.  相似文献   

4.
The reaction of 4‐amino‐1, 2, 4‐triazin‐3(2H)‐thione‐5‐one (ATTO, 1 ) with [Cu(PPh3)2]NO3 in ethanol led to the complex [Cu(PPh3)2(ATTO)]NO3 ( 2 ). 2 was characterized by elemental analyses, IR, 1H NMR and Raman spectroscopy. A single‐crystal X‐ray diffraction of compound 2 revealed that ATTO acts as a bidentate ligand via its nitrogen and sulfur atoms. Crystal data for 2 at 20 °C: space group P21/n with a = 975.7(1), b = 1533.5(2), c = 2504.2(3) pm, β = 92.25(1)°, Z = 4, R1 = 0.0632.  相似文献   

5.
Studies on Polyhalides. 17. Preparation and Crystal Structure of Urotropinium Triiodide, UrHI3 Urotropinium triiodide C6H13N4I3 is formed by the reaction of equimolar amounts of urotropinium iodide and iodine in tBuOH as red-brown cube-like crystals melting at 402 K under decomposition. The compound crystallizes monoclinically in the space group P21/c with a = 952.0(3) pm, b = 1 160.2(6) pm, c = 1 149.9(4) pm, β = 92.22(3)° and Z = 4. The till now not described crystal structure (R = 0.027 for 1 860 observed reflexes) contains urotropinium ions UrH+ and slightly distorted triiodide ions I3?(d(I—I) = 292.3(1), 294.1(1) pm, φ(I—I—I) = 178.27(2)°) which are linked to ion pairs by a rather short contact (d(I …? I) = 389.0(1) pm, φ(I—I …? I) = 149.12(2)°).  相似文献   

6.
Syntheses of Metal Carbonyls. 23. Crystal Structure and Reactivity of Heptamethylindenyl Carbonyl Metal Complexes Reaction of heptamethylindene (C9(CH3)7, 1 ) with Re2(CO)10 yields [η5-C9(CH3)7]Re(CO)3 ( 2 ), which reacts with NO+BF4? to form the cationic complex [{η5-C9(CH3)7}Re(CO)2NO]+BF4? ( 3 ). Irradiation of 2 with UV light in the presence of triethyl phosphite leads to formation of [η5-C9(CH3)7]Re(CO)2[P(OC2H5)3] ( 4 ). Alkylation of (CH3)3SnCl with Ind*Li gives [η1-C9(CH3)7]Sn(CH3)3 ( 5 ). All compounds were characterized by spectroscopic methods. The molecular structures of 3 and 5 were determined by single crystal X-ray diffraction ( 3 : P21/n (14), a = 1497.7(4) pm, b = 879.0(2) pm, c = 1609.0(4) pm and β = 110.99(2)°, R1 = 0.038, wR2 = 0.080; 5 : P21/n (14), a = 726.1(1) pm, b = 2930.7(3) pm, c = 930.0(1) pm and β = 112.834(5)°, R1 = 0.044, Rw = 0.048). Complexes 2 ? 4 exhibit a piano stool configuration with a η5-coordinated permethylindenyl ligand (Ind*). Compound 5 displays a η1 -coordination of the Ind* ligand. Temperature enhancement causes a hapticity change, as observed by NMR spectroscopy.  相似文献   

7.
The two‐ and three‐dimensional mercurous cations [(Hg2)3(OH)2]4+ and [(Hg2)2O]2+ crystallize with channels and cages of roughly 1 nm diameter from aqueous solutions dependent upon the acidity of the solution. Crystal structures were determined, for example, for [Zn(H2O)6][(Hg2)3(OH)2](NO3)6 (trigonal, space group P321, a = 1183.5(2) pm, c = 534.8(1) pm, Z = 1, R1 = 0.0351 for I0 > 2σ(I0)) and for [(Hg2)2O][Pb(NO3)3]2 (cubic, space group , a = 1543.1(2) pm, Z = 8, R1 = 0.0534 I0 > 2σ(I0)).  相似文献   

8.
Simultaneous Intercalation of Antimony Pentachloride with Metal Trichlorides into Graphite The metal trichlorides AsCl3, SbCl3, BiCl3, AlCl3, GaCl3, and FeCl3 intercalate simultaneously with SbCl5 into the graphite lattice forming intercalation compounds of a SbCl5: MCl3 ratio between 1:0.16 and 1:4.5. C24SbCl5(AsCl3)0.9 as well as C60SbCl5(GaCl3)4·5 are already formed by a spontaneous intercalation at 25°C. During co-intercalation of SbCl5 with BiCl3 and AlCl3, respectively, the ratios SbCl5:MCl3 decrease with increasing intercalation time. X-ray and EPMA measurements suggest that homogeneous mixtures of SbCl5 and trichlorides are inserted in the interlayer galleries. The identity periods along c-axis of the stage 1 and stage 2 compounds are Ic = 9.30—9.39 Å and Ic = 12.58—12.76 Å, respectively. In stage 1 SbCl5/AsCl3-graphite as well as SbCl5/GaCl3-graphite a simultaneous desintercalation of SbCl5 and MCl3 have been found in vacuum and by solvents. The successive stage increase during thermal deintercalation was investigated by thermogravimetric methods. Mass spectroscopic gas analysis of the pyrolysis products show that the thermal dissociation of SbCl5 superimposes stage transformations.  相似文献   

9.
Colourless crystals of [Hg2(Mmt)(Dmt)2](NO3)(H2O) were obtained from a reaction of mercuric nitrate with monomethyl‐ and dimethyl‐1,2,4‐triazolate (Mmt? and Dmt?, respectively). In the crystal structure (monoclinic, C2/c (no. 15), a = 2579.4(4), b = 1231.1(2), c = 1634.8(2) pm, β = 128.32(1)°, V = 4073.3(11)·106·pm3, Z = 8, R1 [I0 > 2σ(I0)]: 0.0355), half of the mercuric ions are essentially two‐coordinate (Hg–N: 210‐215 pm), the other half are tetrahedrally surrounded by N‐donor atoms (Hg–N: 221, 225 pm) of the Mmt? and Dmt? anions. These three‐N ligands construct a three‐dimensional framework.  相似文献   

10.
New Phosphido-bridged Multinuclear Complexes of Ag, Cd and Zn. The Crystal Structures of [Ag4(PPh2)4(PMe3)4], [Ag6(PPh2)6(PtBu3)2] and [M4Cl4(PPh2)4(PnPr3)2] (M = Zn, Cd) AgCl reacts with Ph2PSiMe3 in the presence of a tertiary Phosphine PMe3 or PtBu3 to form the multinuclear complexes [Ag4(PPh2)4(PMe3)4] ( 1 ) and [Ag6(PPh2)6(PtBu3)2] ( 2 ). In analogy to that MCl2 reacts with Ph2PSiMe3 in the presence of PnPr3 to form the two multinuclear complexes [M4Cl4(PPh2)4(PnPr3)2] (M = Zn ( 3 ), Cd ( 4 )). The structures were characterized by X-ray single crystal structure analysis ( 1 : space group Pna21 (Nr. 33), Z = 4, a = 1 313.8(11) pm, b = 1 511.1(6) pm, c = 4 126.0(18) pm, 2 : space group P1 (Nr. 2), Z = 2, a = 1 559.0(4) pm, b = 1 885.9(7) pm, c = 2 112.4(8) pm, α = 104.93(3)°, β = 94.48(3)°, γ = 104.41(3)°; 3 : space group C2/c (Nr. 15), Z = 4, a = 2 228.6(6) pm, b = 1 847.6(6) pm, c = 1 827.3(6) pm, β = 110.86(2); 4 : space group C2/c (Nr. 15), Z = 4, a = 1 894.2(9) pm, b = 1 867.9(7) pm, c = 2 264.8(6) pm, β = 111.77(3)°). 3 and 4 may be considered as intermediates on the route towards polymeric [M(PPh2)2]n (M = Zn, Cd).  相似文献   

11.
Single crystals of mercuric bis(N‐imino‐methyl‐formamidate), Hg(Imf)2, were obtained from aqueous solutions of 1,2,4‐triazole and Hg(NO3)2·2H2O. The crystal structure [monoclinic, P21/c (no. 14), a = 499.6(2), b = 1051.2(4), c = 711.1(3) pm, β = 117.55(1)°, Z = 2, R1 for 890 reflections with I0>2σ(I0): 0.0369] contains linear centrosymmetric Hg(Imf)2 molecules with Hg–N distances of only 203.5(7) pm. Two plus two intra‐ and intermolecular nitrogen atoms add to an effective coordination number of 6.  相似文献   

12.
Isotypic Borophosphates MII(C2H10N2)[B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn): Compounds containing Tetrahedral Layers The isotypic compounds MII(C2H10N2) · [B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn) were prepared under hydrothermal conditions (T = 170 °C) from mixtures of the metal chloride (chloride hydrate, resp.), Ethylenediamine, H3BO3 and H3PO4. The orthorhombic crystal structures (Pbca, No. 61, Z = 8) were determined by X‐ray single crystal methods (Mg(C2H10N2)[B2P3O12(OH)]: a = 936.81(2) pm, b = 1221.86(3) pm, c = 2089.28(5) pm) and Rietveld‐methods (MII = Mn: a = 931.91(4) pm, b = 1234.26(4) pm, c = 2129.75(7) pm, Fe: a = 935.1(3) pm, b = 1224.8(3) pm, c = 2088.0(6) pm, Ni: a = 939.99(3) pm, b = 1221.29(3) pm, c = 2074.05(7) pm, Cu: a = 941.38(3) pm, b = 1198.02(3) pm, c = 2110.01(6) pm, Zn: a = 935.06(2) pm, b = 1221.33(2) pm, c = 2094.39(4) pm), respectively. The anionic part of the structure contains tetrahedral layers, consisting of three‐ and nine‐membered rings. The MII‐ions are in a distorted octahedral or tetragonal‐bipyramidal [4 + 2] (copper) coordination formed by oxygen functions of the tetrahedral layers. The resulting three‐dimensional structure contains channels running along [010]. Protonated Ethylenediamine ions are fixed within the channels by hydrogen bonds.  相似文献   

13.
On Copper‐tetrahydrogen‐decaoxo‐diperiodate‐hexahydrate CuH4I2O10·6H2O: Crystal Structure, Vibrational Spectroscopy and Thermal Analysis By crystallization from a strongly acidic aqueous solution copper‐tetrahydrogen‐decaoxodiperiodate‐hexahydrate CuH4I2O10· 6H2O has been obtained. In the structure of this compound (S.G. P 21/c, Nr.14), Z = 2, a = 1060.2(2) pm, b = 551.1(1) pm, c = 1164.7(2) pm, β = 111, 49(3)°) centrosymmetric [H4I2O10]2— anions in the form of two edge sharing octahedra form layers via hydrogen bonds originating from the acidic, trans‐configurated OH groups of the anions. Raman spectra are given and analyzed with respect to the internal vibrations of the periodate anion. The dehydration of the compound takes place via CuH4I2O10·3H2O and Cu(H2IO5)2 which decomposes at 170 °C to Cu(IO3)2.  相似文献   

14.
The Reaction of SeCl4 with Transition Metal Tetrachlorides. Synthesis and Crystal Structures of (SeCl3)2MCl6 with M = Zr, Hf, Mo, Re The transition metal tetrachlorides ZrCl4, HfCl4 and MoCl4 react with SeCl4 in closed ampoules at temperatures of 140°C to (SeCl3)2MCl6 (M = Zr, Hf, Mo) which are all isotypic and crystallize in the (SeCl3)2ReCl6 structure type (orthorhombic, Fdd2, Z = 8, lattice constants for M = Zr: a = 1165.7(1)pm, b = 1287.2(2)pm, c = 2180.2(2)pm; for M = Hf: a = 1162.9(2)pm, b = 1285.0(2)pm, c = 2178.2(3)pm; for M = Mo: a = 1153.8(1)pm, b = 1267.7(1)pm, c = 2147.4(2)pm). The Cl? ions form a hexagonal closest packing with one fourth of the octahedral holes filled by Se4+ and M4+ in an ordered way. The MCl6 octahedra are regular, the SeCl6 octahedra are distorted with 3 short and 3 long Se? Cl bonds (mean 215 pm and 287 pm). The structures can thus be regarded as built of SeCl3+ and MCl62? ions. Magnetic susceptibility measurements show for M = Zr the expected diamagnetic behavior, for M = Mo and Re paramagnetic behavior according to the Curie-Weiss law with magnetic moments of 2.5 B. M. for M = Mo and 3.7 B. M. for M = Re corresponding to 2 and 3 unpaired electrons respectivly.  相似文献   

15.
The Crystal Structure of PrTe2 X‐ray diffraction single‐crystal structure analysis of PrTe2 prepared by chemical vapour transport reactions starting with praseodymium and tellurium in the presence of trace amounts of iodine also revealed superstructure reflections indicating just as for CeTe2 a (2 × 2 × 2)‐supercell of the basic anti‐Fe2As‐type structure instead of a (2 × 2 × 1)‐supercell as for LaTe2. In contrast to LaTe2 with monoclinic symmetry (space group P1c1), PrTe2 crystallizes tetragonal in the space group P4 with the lattice parameters a = 896.80(5) pm and c = 1811.9(1) pm (Z = 16). The doubling of the c‐lattice parameter compared to LaTe2 is observed due to different polyanionic structural motifs in the heights z ≈ 0 and z ≈ 1/2. These are a herringbone pattern of [Te2] dumbbell pairs (motif A; a topology which is also found in LaTe2), isolated square four‐membered [Te4] rings in z ≈ 0 (motif B) and additionally rectangular four‐membered [Te4] rings in z ≈ 1/2 (motif C). Though CeTe2 and PrTe2 are crystallizing isotypically, there are distinct differences in the interatomic distances within the polyanionic Te layers and resulting from these also a different topology of the structural motif C. The individual structural elements are causing a diffraction pattern, which is all in all to be explained by a statistical superposition of the different elements in form of microdomains.  相似文献   

16.
Is there a Wurtzite‐Modification of Lithium Bromide? — Studies on the System LiBr/LiI — Deposition of mixtures of LiBr/LiI (ratio: LiBr/LiI = 3:1, 2:1, 1:1, 1:2, 1:3, 1:4) and of pure LiI and LiBr from the gas phase onto a sapphire substrate at ‐196 °C in a high vacuum chamber were investigated by means of temperature‐dependent X‐ray diffraction. Below 0 °C LiI crystallizes in the hexagonal Wurtzite‐modification (β‐LiI) with a = 451.4(1) und c = 731.1(2) pm, which transforms into the cubic rock salt modification (α‐LiI, a = 602.57(3) pm) by heating up to room temperature. Co‐depositions of LiBr/LiI formed solid LiBr1‐xIx solutions that also crystallize in the Wurtzite‐modification, below room temperature. Compared to β‐LiI, these solid solutions are more stable and transform into the cubic phase at the significantly higher temperature of 80 °C. The lattice constants of LiBr1‐xIx with x ≈ 0.7 are a = 445.48(7), c = 719.1(1) pm and with x ≈ 0.4 are a = 431.50(5), c = 691.7(1) pm. The hexagonal phase LiBr1‐xIx is observed for the complete series of mixed crystals with 0.25 ≤ x ≤ 0.8. Both cubic phases, α‐LiI and LiBr, show solubilities of up to ca. 10 % of the respective other compound. In case of pure LiBr only the cubic modification (a = 551.54(2) pm, 25 °C) was observed in the complete temperature range (‐196 °C to 25 °C).  相似文献   

17.
By reaction of GeI4, [N(nBu)4]I as iodide donor, and [NMe(nBu)3][N(Tf)2] as ionic liquid, reddish‐black, plate‐like shaped crystals are obtained. X‐ray diffraction analysis of single crystals resulted in the compositions ;alpha;‐[NMe(nBu)3](GeI4)I (Pbca; a = 1495.4(3) pm; b = 1940.6(4) pm; c = 3643.2(7) pm; Z = 16) and β‐[NMe(nBu)3](GeI4)I (Pn; a = 1141.5(2) pm; b = 953.6(2) pm; c = 1208.9(2) pm; β = 100.8(1)°; Z = 2). Depending on the reaction temperature, the one or other compound is formed selectively. In addition, the reaction of GeI4 and [N(nBu)4]I, using [ImMe(nBu)][BF4] (Im = imidazole) as ionic liquid, resulted in the crystallization of [ImMe(nBu)][N(nBu)4](GeI4)3I2 (P21/c; a = 1641.2(3) pm; b = 1903.0(4) pm; c = 1867.7(4) pm; β = 92.0(1)°; Z = 4). The anionic network of all three compounds is established by molecular germanium(IV)iodide, which is bridged by iodide anions. The different connectivity of (GeI4–I) networks is attributed to the flexibility of I regarding its coordination and bond length. Here, a [3+1]‐, 4‐ and 5‐fold coordination is first observed in the pseudo‐ternary system M/Ge/I (M: cation).  相似文献   

18.
Tl2CuAsO4 – an Intermediate Phase in the Oxidation of Tl/Cu/As Alloys with Oxygen Waxy, honey-jellow single crystals of the new compound Tl2CuAsO4 (monoclinic, P21/c, a = 860.1(1) pm, b = 533.94(7) pm, c = 1200.1(2) pm, β = 98.10(1)°, Z = 4) were prepared as an intermediate product of the oxidation process in the reaction of Tl/Cu/As-alloys with oxygen. Their structure was determined from IPDS data (w2R = 0.071 for 1271 F2 values and 74 parameters). The structure contains an isolated [Cu2As2O8]4– group consisting of two AsO4-tetrahedra connected by two Cu+ ions with an approximately linear O–Cu–O coordination. The [Cu2As2O8]4– groups are linked to a threedimensional framework by thallium(I) ions which show an hemispheric coordination sphere of oxygen ions indicating the stereochemical activity of the Tl+ lone pair.  相似文献   

19.
The complex 3[(CH3)3NHCl].pdCl2 crystallises in the orthorhombic system, space group Pnma: a = 990(1) pm; b = 1209(1) pm; c = 1721(2) pm; Z = 4; dth = 1.49; dexp = 1.45. The structure is composed of square planar PdCl42− ions (average length PdCl = 230 pm), of two ammonium groups, each one equidistant of two chlorine atoms and in cis position to the plane of PdCl42−. A third (CH3)3NHCl molecule is in insertion in the structure. This is a new type of solvate in which the insertion molecule is an ion pair.  相似文献   

20.
The Prismatic Te62+ Ion in the Structure of Te6(NbOCl4)2 Te6(NbOCl4)2 is obtained from Te, TeCl4 and NbOCl3 at 200°C. It crystallizes triclinic, space group P1 (a = 915,5(4) pm, b = 1655,3(6) pm, c = 3134,4(9) pm, α = 42,62(2)°, β = 117,12(6)°, γ = 138,24(8)°). The crystal structure analysis shows, that the structure is built of one-dimensional polymeric [NbOCl4?] chains in which the monomers are linked via linear O? Nb? O-bridges and from discrete Te62+ polycations that are also arranged in strands, but without significant interactions. The structure is closley related but not isotypic to the previously reported tungsten containing analogue Te6(WOCl4)2 (monoclinic, P21/c). A comparison of the two structures shows that rotations of the cationic strands relative to the anionic strands lead to different cation-anion interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号