首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《力学快报》2021,11(6):100312
We investigate flow structures, nonlinear inertial waves and energy transfer in a rotating fluid sphere, using a Galerkin spectral method based on helical-wave decomposition (HWD). Numerical simulations of flows in a sphere are performed with different system rotation rates, where a large-scale forcing is employed. For the case without system rotation, the intense vortex structures are tube-like. When a weak rotation is introduced, small-scale structures are reduced and vortex tubes tend to align with the rotation axis. As the rotation rate increases, a large-scale anticyclonic vortex structure is formed near the rotation axis. The structure is shown to be led by certain geostrophic modes. When the rotation rate further increases, a cyclone and an anticyclone emerge from the top and bottom of the boundary, respectively, where two quasi-geostrophic equatorially symmetric inertial waves dominate the flow. Based on HWD, effects of spherical confinement on rotating turbulence are systematically studied. It is found that the forward cascade becomes weaker as the rotation increases. When the rotation rate becomes larger than some critical value, dual energy cascades emerge, with an inverse cascade at large scales and a forward cascade at small scales. Finally, the flow behavior near the boundary is studied, where the average boundary layer thickness gets smaller when system rotation increases. The flow behavior in the boundary layer is closely related to the interior flow structures, which create significant mass flux between the boundary layer and the interior fluid through Ekman pumping.  相似文献   

2.
Summary The heat transfer problem for the flow of an incompressible viscous, heat-conducting fluid, due to uniform rotation about a diameter of a sphere, which is kept at a constant temperature, has been solved with viscous dissipation included. Due to inflow at the poles the cooler liquid is drawn from infinity towards the rotating sphere and this causes a lowering of the temperature there. After flowing in the boundary layer of the sphere the liquid gets heated up and causes a rise in temperature near the equator. Numerical results are given in case of water (Prandtl number σ=5), and it is found that the isothermals are surfaces of revolution flattened at the poles and elongated near the equator. The thermal and the velocity boundary layers turn out to be of the same order of magnitude.  相似文献   

3.
Aerodynamic force acting on a sphere for five kinds of boundary layer trips around the critical Reynolds number, together with the force on a smooth sphere, was successfully measured. This was achieved using JAXA’s 60-cm Magnetic Suspension and Balance System after performing detailed simulations and adjusting the sphere mass and its control parameters. The minimum drag coefficient of a smooth sphere was evaluated around 0.19 in the support-interference-free condition. No hysteresis was observed for the drag coefficient in the critical range for tested sphere with boundary layer trips. Using three serially connected 2nd-order Butterworth low-pass filters, an inertia force oscillating at less than 15 Hz was evaluated from the measured model position, and the unsteady aerodynamic force acting on the sphere was also evaluated with reasonable accuracy. Two kinds of oscillatory aerodynamic forces appeared in the critical range depending on the sphere surface condition: a force rotating around an axis parallel to the uniform flow for both a smooth sphere and a sphere with axially symmetric 0.17-mm-high backward step, and an oscillating force in the plane including the axis parallel to the flow for a sphere with axially symmetric step implemented with 0.35–mm-thick tape with wrinkles acting as small vortex generators. There was also observed a force irregularly rotating through less than 180° in the range about a sphere axis parallel to the flow for a smooth sphere in the supercritical range.  相似文献   

4.
A vibrating convective flow around a uniformly heated sphere in weightlessness conditions is studied theoretically for circularly polarized vibrations. It is found that the fluid motion has the form of two jets spreading from the sphere in opposite directions along the symmetry axis, perpendicular to the vibration polarization plane. For large characteristic temperature gradients, the flow becomes self-similar. The equations describing thermovibrational convection in the boundary layer approximation are derived. A class of self-similar solutions for a point heat source is found. The results obtained on the basis of the full equations and in the boundary layer approximation are compared.  相似文献   

5.
The electric characteristics of a sphere located in a flow of viscous, electrically quasi-neutral weakly-ionized gas containing electrons and monovalent ions are investigated theoretically and numerically. As in the majority of applications, the electrogasdynamic (EGD) interaction parameter is assumed to be small. This makes it possible to solve the gasdynamic and electric equations successively. The spherical surface is assumed to be conducting and heat-insulated. At low free-stream Mach numbers the gas temperature is almost constant in the region of flow past the sphere. This makes it possible to use the model of a viscous incompressible medium. The flow past a sphere is analyzed for gasdynamic Reynolds numbers varying over the interval 0 ≤ Re ≤ 1000. The electrodynamic equations in which the convection and diffusion of the electrons and ions and their electrical drift are taken into account are reduced to three elliptic equations for the electron and ion concentrations and the electric potential. A constant potential is assigned on the boundary of the computation region simulating infinity. The entire problem is simulated numerically using specially constructed grids. The charged-component, potential, and electric current fields are determined and the volt-ampere characteristics of the sphere are constructed for various gas velocities. The results obtained generalize the available data on the voltampere characteristics of a sphere (probe) in a weakly-ionized medium at rest.  相似文献   

6.
An interaction problem is formulated for a spherical body oscillating in a prescribed manner inside a thin elastic cylindrical shell filled with a perfect compressible liquid and submerged in a dissimilar infinite perfect compressible liquid. The geometrical center of the sphere is on the cylinder axis. The solution is based on the possibility of representing the partial solutions of the Helmholtz equations written in cylindrical coordinates for both media in terms of the partial solutions written in spherical coordinates, and vice versa. Satisfying the boundary conditions on the sphere and shell surfaces results in an infinite system of linear algebraic equations. This system is used to determine the coefficients of the Fourier-series expansions of the velocity potentials in terms of Legendre polynomials. The hydrodynamic characteristics of both liquids and the shell deflections are determined. The results obtained are compared with those for a sphere oscillating on the axis of an elastic cylindrical shell filled with a compressible liquid (the ambient medium being neglected).  相似文献   

7.
The Lattice Boltzmann method has been widely adopted to simulate flow in porous media. The choice of appropriate boundary schemes is essential to achieve simulation accuracy; however, the criteria for the most suitable boundary treatment in the simulation of flow in porous media flow remain unresolved. Here, three types of the most commonly used boundary conditions are tested: interpolation bounce back (IBB), partial saturated method (PSM), and immersed boundary method (IBM). The dimensionless drag of face-centered cubic (FCC) sphere array and the dimensionless permeability of a random closely packed (RCP) sphere array are calculated and compared at different viscosities and resolutions. In the FCC sphere array case where spheres are not contacted, the IBB and PSM exhibit the same accuracy and both are of the second-order convergence rate. The IBM is less accurate and is of the first-order convergence rate. In the RCP sphere array case where the spheres are contacted, the IBB shows finer results and a second-order convergence rate. PSM underestimates the dimensionless permeability and increases resolution only slightly improved the results of PSM. The IBM overestimates the dimensionless permeability. These results indicate that among the three methods, the IBB is the most accurate. The PSM has the same accuracy as the IBB when sediments are not contacted; however, it loses its accuracy in the simulation of flow in closely packed porous media. This work could serve as a benchmark for further research in choosing the most appropriate method in the simulation of flow in porous media.  相似文献   

8.
As a result of the reporting of casual observations of the oscillation or rotation of the beacons in transmission line guard cables, some attention has been paid to the stability of the guard cables with beacons.The relatively more frequent observation of these motions has been explained in recent papers dealing with the elastic part of the problem as a consequence of the increasing number of resonant frequencies (one for each additional beacon) that can be excited by appropriate aerodynamic loads. But a model that could explain the aerodynamic forces that can give rise to this motion is still lacking.In this paper we consider the transverse motions of a single sphere in two simplified configurations, (1) hanging (tethered at one point), and (2) swing (tethered at two points) under a longitudinal flow, performing small amplitude swinging oscillations or circular-orbit autorotation about an axis parallel to the main flow direction. The dynamic model here presented is based on the motion equations, which also include a model for the aerodynamic lift and drag forces on the sphere in transverse motion, which considers the effect of changes of flow around the sphere due to the cable interference. These forces are contained in the symmetry plane of the flow relative to the sphere, and, when projected on the lateral direction, give rise to a lateral force, which can explain the existence of the azimuthal motion even at a large reduced velocity, outside the vortex induced vibration (VIV) range The conditions for stable small oscillation motion and circular-orbit autorotation of a sphere in a swing configuration are given.The results for the aerodynamic loads in transverse motion have also been applied to the case of a circular-orbit autorotation of a hanging sphere (spherical pendulum) under a vertical flow. The angular rotation speed and the orbit radius (or cable angle) have been determined as a function of aerodynamic coefficients and configuration parameters.  相似文献   

9.
Summary A theoretical analysis is made of the flow of an incompressible viscoelastic fluid contained between two concentric spheres when the outer sphere is moved instantaneously in a given direction, whilst the inner sphere remains at rest. The solution is developed by successive approximations, the first corresponding to the instantaneous slow flow of a Newtonian viscous fluid. By allowing the radius of the outer sphere to approach infinity, the result obtained can be used to give an approximate solution to the equations of motion of a visco-elastic fluid flowing slowly past a fixed sphere.  相似文献   

10.
The process of the selection of one of the two flow patterns possible in the hysteresis region, when the Reynolds number is varied in different directions, and differing with respect to the azimuthal wavenumber, 3 or 4, is experimentally investigated. The flow pattern selection proceeds under the influence of an increase in the rotation velocity of the inner sphere at a constant acceleration, the post-acceleration velocity remaining constant. The spherical layer thickness is equal to the inner sphere radius and the outer boundary is fixed. It is established that there is a time lag between the beginning (end) of the sphere acceleration and the beginning (end) of the variation in the measured azimuthal velocity component. It is found that the acceleration necessary for one flow pattern to be replaced by the other significantly depends not only on the Reynolds numbers at which the acceleration begins and ends but also on the fluid temperature in the layer. It is shown that the temperature dependence can be attributed to the variation in the Reynolds number corresponding to the position of the hysteresis boundary when the working fluid viscosity is varied in the layer.  相似文献   

11.
A perturbation analysis is presented in this paper for the electroosmotic(EO) flow of an Eyring fluid through a wide rectangular microchannel that rotates about an axis perpendicular to its own. Mildly shear-thinning rheology is assumed such that at the leading order the problem reduces to that of Newtonian EO flow in a rotating channel, while the shear thinning effect shows up in a higher-order problem.Using the relaxation time as the small ordering parameter,analytical solutions are deduced for the leading-as well as first-order problems in terms of the dimensionless Debye and rotation parameters. The velocity profiles of the Ekman–electric double layer(EDL) layer, which is the boundary layer that arises when the Ekman layer and the EDL are comparably thin, are also deduced for an Eyring fluid. It is shown that the present perturbation model can yield results that are close to the exact solutions even when the ordering parameter is as large as order unity. By this order of the relaxation time parameter, the enhancing effect on the rotating EO flow due to shear-thinning Eyring rheology can be significant.  相似文献   

12.
We have studied dilute aqueous solutions of hydrolysed poly(acrylamide), in various ionic environments, in flow around single spheres and around two spheres aligned on the axis of flow. The spheres are held on flexible cantilevers, while the polymer solutions, or solvent, are drawn past at controlled flow rates. We estimate the specific viscosities of the various solutions as a function of the strain rate over strain rates encompassing both the shear thinning and extension thickening regimes. For flow of solutions without added salts around a single sphere, we observe shear thinning followed by a significant increase in the non-Newtonian viscosity with increasing strain rate. The shear thinning reduces the maximal extensional viscosities of the solutions, which has important implications regarding the effectiveness of hydrolysed poly(acrylamide) in oil field applications. For flow of polymer solutions around two axially aligned spheres, we observe a significant reduction in the non-Newtonian forces experienced by the downstream sphere in comparison to the upstream sphere. We consider that this is salient to the understanding of non-Newtonian viscosification in porous media flow.  相似文献   

13.
Solutions are presented for the Stokes flow past finite axial assemblages of up to 9 spheres in an infinitely long cylindrical tube for a wide range of sphere spacings and sphere to cylinder diameter ratios. General solutions are constructed from the fundamental solutions to the governing equation in both the cylindrical and spherical coordinate systems. No-slip boundary conditions are enforced on the tube surface by constructing the Fourier transform of the general disturbance created by the spheres, as detected on the cylinder wall. The boundary conditions are then applied on the sphere surfaces by a previously developed series truncation technique.The calculated drag forces and zero-drag velocities demonstrate the interparticle interaction effects, the sphere-wall interactions, and the effects of wall damping on the inter-particle shielding phenomenon.  相似文献   

14.
We study the effect of the viscosity on the hydrodynamic flow fields past the interface of a spherical deforming gas bubble impulsively started at a constant velocity in a viscous liquid of large extent at rest. Exact solutions for the unsteady inner and outer flow fields within the boundary layers are obtained making appropriate scalings on the position, velocity and time variables in the non-linear Navier-Stokes equations. These theoretical results apply to any slowly deforming fluid sphere, whatever the time-dependence of its radius, provided that the internal circulation is complete, the flow separation is negligible, the Reynolds numbers are large and the bubble retains its spherical shape. A numerical application to the case of deforming air bubble in water is discussed.  相似文献   

15.
This paper presents results obtained by employing a modified Galerkin finite element method to analyse the steady state flow of a fluid contained between two concentric, rotating spheres. The spheres are assumed to be rigid and the cavity region between the spheres is filled with an incompressible, viscous, Newtonian fluid. The inner sphere is constrained to rotate about a vertical axis with a prescribed angular velocity, while the outer sphere is fixed. Results for the circumferential function Ω, streamfunction ψ, vorticity function ζ and inner boundary torque T1 are presented for Reynolds numbers Re ? 2000 and radius ratios 0.1 ? α ? 0.9. The method proved effective for obtaining results for a wide range of radius ratios (0.1 ? α ? 0.9) and Reynolds numbers (0 ? Re ? 2000). Previous investigators who employed the finite difference method experienced difficulties in obtaining results for cases with radius ratios α ? 0.2, except for small Reynolds numbers (Re ? 100). Results for Ω, Ψ, ζ and T1 obtained in this study for radius ratios 0.8 ≤ α ≤ 0.9 verified the development of Taylor vortices reported by other investigators. The research indicates that the method may be useful for analysing other non-linear fluid flow problems.  相似文献   

16.
The unsteady flow over a plane wall which is initially at rest and the plate begins suddenly to oscillate in own plane is considered. The solution subject to the boundary and initial conditions is obtained by applying to the governing equation the Laplace transform method or Fourier transform method. A comparison of the solutions obtained by two transform methods for flow considered is given. It is shown that the solution obtained by the Laplace transform method or Fourier transform method is the sum of the steady-state and the transient parts. The transient parts are found in terms of definite integrands whose integrals are oscillatory functions. Therefore, the transient parts are expressed in terms of the tabulated functions.  相似文献   

17.
The problem of the stabilization of the diffusion-induced flow over a sphere submerged in a continuously stratified fluid is solved using both asymptotic and numerical methods. The analytical solution describes the structure of the main convective cells, including thin meridional jets flowing along the surface and plumes spreading from the flow convergence regions above the upper and lower poles of the sphere which gradually return the fluid particles to the neutral buoyancy horizon. The total width of the flows adjacent to the surface exceeds the thickness of the salinity deficit layer or the density boundary layer. The numerical solution of the complete problem in the nonlinear formulation describes the main convective cells and two systems of unsteady integral waves formed in the vicinity of the sphere poles. At large times, out of the entire system of internal waves only those nearest to the neighborhood of their horizon of formation remain clearly defined. The calculated flow patterns are in agreement with each other and the data of shadow visualization of the stratified fluid structure near a submerged obstacle at rest.  相似文献   

18.
Effect of ventilation on the flowfield around a sphere   总被引:4,自引:0,他引:4  
The flowfield around a sphere with and without ventilation was investigated in a wind tunnel over a range of Reynolds numbers in an incompressible flow. At supercritical Re, the pressure drag of a sphere can be nearly nullified by venting only 2% of the frontal area of the sphere to the base through a smooth internal duct. The drag reduction is achieved by increased pressures in the separated flow region close to the base. At high Re, the vent flow breaks through the near wake and brings about symmetry in the global flowfield. When the internal shear is increased by using a rough internal duct, the base pressure is unchanged, but the external flow is accelerated to velocities beyond that achieved by the potential flow around the basic sphere. The findings can be explained by a flow model in which the near wake is aerodynamically streamlined by a pair of counterrotating vortex rings at the base. A roughness element can be made to partially destroy the vortex system at the base and result in a steady asymmetric wake. A 1.2 mm diameter wire placed at 70° was found to overtrip the boundary layer and completely destroy the vortex system. Simultaneously, the turbulent separation is advanced and the drag increased.At subcritical Re, ventilation marginally increases static pressures all over the surface. Since the large pressure differential between the windward and leeward sides is not reduced, the internal flow has a rapid acceleration to a velocity close to that of the free stream. The reverse flow associated with the near wake forces the vent flow to rest within itself and the wake profile is unchanged. The main features of subcritical flow around the basic sphere are retained in spite of ventilation. The upstream effects of ventilation are greater for subcritical flow than for supercritical flow.The work reported was carried out under a study grant from the German Academic Exchange Service (DAAD) in Bonn. The authors wish to thank the Director of DAAD in Bonn for the same. Thanks are due to Dr. F. R. Grosche and colleagues at DLR in Göttingen who assisted in the design, fabrication and wind tunnel testing of the sphere model. Thanks are also due to Prof. D. G. Mabey, visiting Professor, Imperial College, London for useful discussions. The many useful discussions with the research advisors of the first author viz., Dr. P. R. Viswanath of National Aerospace Laboratories and Prof. A. Prabhu of Indian Institute of Science, Bangalore are acknowledged with thanks. The support given by the Head, Experimental Aerodynamics Division, National Aerospace Laboratories is thankfully acknowledged.  相似文献   

19.
M. Guria  B. K. Das  R. N. Jana 《Meccanica》2007,42(5):487-493
An analytical solution of the unsteady Navier–Stokes equations is obtained for the flow due to non-coaxial rotations of an oscillating porous disk and a fluid at infinity, rotating about an axis parallel to the axes of rotation of the disk through a fixed point. The velocity distributions and the shear stresses at the disk are obtained for three different cases when the frequency parameter is greater than, equal to or less than the rotation parameter. The flow has a boundary layer structure even in the case of blowing at the disk.  相似文献   

20.
The coupled flow problem of an incompressible axisymmetrical quasisteady motion of a porous sphere translating in a viscous fluid along the axis of a circular cylindrical pore is discussed using a combined analytical–numerical technique. At the fluid–porous interface, the stress jump boundary condition for the tangential stress along with continuity of normal stress and velocity components are employed. The flow through the porous particle is governed by the Brinkman model and the flow in the outside porous region is governed by Stokes equations. A general solution for the field equations in the clear region is constructed from the superposition of the fundamental solutions in both cylindrical and spherical coordinate systems. The boundary conditions are satisfied first at the cylindrical pore wall by the Fourier transforms and then on the surface of the porous particle by a collocation method. The collocation solutions for the normalized hydrodynamic drag force exerted by the clear fluid on the porous particle is calculated with good convergence for various values of the ratio of radii of the porous sphere and pore, the stress jump coefficient, and a coefficient that is proportional to the permeability. The shape effect of the cylindrical pore on the axial translation of the porous sphere is compared with that of the particle in a spherical cavity; it found that the porous particle in a circular cylindrical pore in general attains a lower hydrodynamic drag than in a spherical envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号