首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
XIAO Hai  LI Jun 《结构化学》2008,27(8):967-974
Benchmark calculations on the molar atomization enthalpy, geometry, and vibrational frequencies of uranium hexafluoride (UF6) have been performed by using relativistic density functional theory (DFT) with various levels of relativistic effects, different types of basis sets, and exchange-correlation functionals. Scalar relativistic effects are shown to be critical for the structural properties. The spin-orbit coupling effects are important for the calculated energies, but are much less important for other calculated ground-state properties of closed-shell UF6. We conclude through systematic investigations that ZORA- and RECP-based relativistic DPT methods are both appropriate for incorporating relativistic effects. Comparisons of different types of basis sets (Slater, Gaussian, and plane-wave types) and various levels of theoretical approximation of the exchange-correlation functionals were also made.  相似文献   

2.
A relativistic analogue to Ramsey's theory of NMR chemical shifts is formulated. Four-component spinor one-electron wavefunctions and relativistic magnetic hamiltonians are used. In contrast to the third-order Pauli approximation theory of Nakagawa et al., the main relativistic effects are then included in the usual second-order theory.  相似文献   

3.
A brief review of relativistic quantum chemistry is given here. Relativistic effects and their importance in chemistry are discussed. An outline of different theoretical aspects is presented. Aspects of variation techniques relevant to relativistic calculations are discussed in detail. These involve the derivation of min-max theorems for Dirac, Dirac-Hartree-Fock and Dirac-Coulomb calculations. The consequence of relativistic Hamiltonians being unbounded are also discussed for other lines of investigation. The upper bounds derived are physically interpreted. Sample Dirac-Hartree-Fock results for the Be atom, calculated using both STO and GTO bases for the nonrelativistic orbitals and the upper components of the relativistic orbitals, are given. The inadequacy of the so-called kinetically balanced basis set is discussed and illustrated with these results. The importance of the variational or dynamical balance and hence the merit of the LCAS-MS scheme is pointed out. The possibility of calculating quantum electrodynamical pair energy from relativistic configuration interaction calculations on a two-electron atom is discussed and exemplified. The present status of relativistic molecular calculations is briefly reviewed. Conclusions on the aspects of variational analysis and molecular calculations are enclosed.  相似文献   

4.
A theoretical study of the relation between the relativistic formulation of the nuclear magnetic shielding and spin-rotation tensors is presented. To this end a theoretical expression of the relativistic spin-rotation tensor is formulated, considering a molecular Hamiltonian of relativistic electrons and non-relativistic nuclei. Molecular rotation effects are introduced considering the terms of the Born-Oppenheimer decomposition, which couple the electrons and nuclei dynamics. The loss of the simple relation linking both spectral parameters in the non-relativistic formulation is further analyzed carrying out a perturbative expansion of relativistic effects by means of the linear response within the elimination of the small component approach. It is concluded that relativistic effects on the spin-rotation tensor are less important than those of the nuclear magnetic shielding tensor.  相似文献   

5.
To elucidate the physical origin of relativistic changes of molecular properties, exact theorems, perturbation theory, and Hartree-Fock-Slater-Pauli calculations are exploited. The relativistic molecular virial theorem offers insight into the relativistic and nonrelativistic, kinetic, and potential energy contributions to the bond energy. In general, there exist two contributions to the relativistic correction of a molecular property: the relativistic change at the nonrelativistic equilibrium geometry and the change of the nonrelativistic property due to the relativistic change of the equilibrium geometry. Sometimes the first and sometimes the second contribution is the dominant one. Accurate numerical results for H+2-like systems are obtained using direct relativistic double perturbation theory. In some cases, near-degenerate perturbation theory is mandatory. Relativistic changes of chemical bond energies are often proportional to the density change in the K-shell when the bond is formed. Relativistic corrections to many properties (and also to the 1s2-correlation energy) are often proportional to Z2α2. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
The nuclear quadrupole coupling constants (NQCCs) of noble gas and noble metal nuclei in the recently found noble gas-noble metal fluorides (NgMF, where Ng=Ar,Kr,Xe and M=Cu,Ag,Au) are obtained theoretically by high-level ab initio calculations, where both relativistic and electron correlation effects are included, and compared to experimental results. Fully relativistic four-component Dirac-Hartree-Fock (DHF) calculations are carried out at the basis set limit for electric field gradient that couples with the electric quadrupole moment of the nucleus, and uncorrelated relativistic effects are extracted by comparing DHF results to nonrelativistic (NR) HF calculations. Electron correlation effects are investigated both at fully relativistic second-order Moller-Plesset (DMP2) and at NR MP2 levels of theory, as well as at the NR coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level. The validity of the approximation where relativistic effects, on the one hand, and nonrelativistically obtained correlation effects, on the other hand, are evaluated separately and assumed to be additive, is investigated by comparison with the DMP2 results. Inclusion of relativistic effects is shown to be necessary for obtaining the correct NQCC trends as the nucleus of interest and/or its neighbors become heavier. Electron correlation treatment is needed for approaching quantitative agreement with the experimental NQCCs. The assumption of additive electron correlation and relativistic effects, corresponding to the NR correlation treatment added on top of relativistic DHF data, gives qualitatively correct noble gas NQCCs. For noble metal NQCCs, correlation treatment at the relativistic level of theory is mandatory for reaching agreement with experimental results. Current work also confirms the experimental trends of NQCCs, which have been taken as an indication of nearly covalent interaction between noble gas and noble metal in the heaviest present systems, especially in XeAuF.  相似文献   

7.
杜奇石  刘朝萌 《化学学报》1990,48(9):841-845
分子形成中的相对论效应定义。用相对论电荷迭代EHT程序ITEREX计算了惰性元素氟化物XeF2, XeF4, XeF6, KrF2和RnF2的相对论效应, 分别为-72.91,是-160.34,-281.82, -25.44和-220.7kJ·mol^-^1。惰性元素化合物的相对论效应都是负值, 使分子趋于稳定。还计算了IF和CsF的相对论效应, 分别是10.68和17.42kJ·mol6-^1, 均为正值, 使分子能量升高, 证实了相对论效应在惰性元素化合物中的重要作用。  相似文献   

8.
介绍了Dirac,Desclaux等人发展的相对论多电子原子自洽场Dirac-Fock(MCDF)方法,并用相对论多电子原子MERECC-94程序计算了元素Au,Fr的电子结构。结果表明:尽管Fr的1s轨道相对论收缩效应比Au大,但因外壳层电子结构的不同,使Au的6s轨道的相对论收缩和稳定化效应比Fr和7s更明显。  相似文献   

9.
RSCF wavefunctions are calculated using the formalism of the authors. The results essentially agree with the non- relativistic calculations as expected because relativistic effects are negligible for these light atom diatomics.  相似文献   

10.
The field theoretical background of relativistic density functional theory is emphasized and its consequences for relativistic Kohn-Sham equations are shown. The local density approximation for the exchange energy functional is reviewed and the importance of relativistic corrections for an accurate representation of the exchange functional is demonstrated. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Long‐range β‐ and γ‐relativistic effects of halogens in 15N NMR chemical shifts of 20 halogenated azines (pyridines, pyrimidines, pyrazines, and 1,3,5‐triazines) are shown to be unessential for fluoro‐, chloro‐, and bromo‐derivatives (1–2 ppm in average). However, for iodocontaining compounds, β‐ and γ‐relativistic effects are important contributors to the accuracy of the 15N calculation. Taking into account long‐range relativistic effects slightly improves the agreement of calculation with experiment. Thus, mean average errors (MAE) of 15N NMR chemical shifts of the title compounds calculated at the non‐relativistic and full 4‐component relativistic levels in gas phase are accordingly 7.8 and 5.5 ppm for the range of about 150 ppm. Taking into account solvent effects within the polarizable continuum model scheme marginally improves agreement of computational results with experiment decreasing MAEs from 7.8 to 7.4 ppm and from 5.5 to 5.3 ppm at the non‐relativistic and relativistic levels, respectively. The best result (MAE: 5.3 ppm) is achieved at the 4‐component relativistic level using Keal and Tozer's KT3 functional used in combination with Dyall's relativistic basis set dyall.av3z with taking into account solvent effects within the polarizable continuum solvation model. The long‐range relativistic effects play a major role (of up to dozen of parts per million) in 15N NMR chemical shifts of halogenated nitrogen‐containing heterocycles, which is especially crucial for iodine derivatives. This effect should apparently be taken into account for practical purposes.  相似文献   

12.
Summary. Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D.In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches.  相似文献   

13.
The main factors affecting the accuracy and computational cost of the Second‐order Möller‐Plesset perturbation theory (MP2) calculation of 77Se NMR chemical shifts (methods and basis sets, relativistic corrections, and solvent effects) are addressed with a special emphasis on relativistic effects. For the latter, paramagnetic contribution (390–466 ppm) dominates over diamagnetic term (192–198 ppm) resulting in a total shielding relativistic correction of about 230–260 ppm (some 15% of the total values of selenium absolute shielding constants). Diamagnetic term is practically constant, while paramagnetic contribution spans over 70–80 ppm. In the 77Se NMR chemical shifts scale, relativistic corrections are about 20–30 ppm (some 5% of the total values of selenium chemical shifts). Solvent effects evaluated within the polarizable continuum solvation model are of the same order of magnitude as relativistic corrections (about 5%). For the practical calculations of 77Se NMR chemical shifts of the medium‐sized organoselenium compounds, the most efficient computational protocols employing relativistic Dyall's basis sets and taking into account relativistic and solvent corrections are suggested. The best result is characterized by a mean absolute error of 17 ppm for the span of 77Se NMR chemical shifts reaching 2500 ppm resulting in a mean absolute percentage error of 0.7%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D.In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches.  相似文献   

15.
The theoretical and technical foundations are presented for the efficient relativistic electronic structure theories to treat heavy-atomic molecular systems. This review contains two surveys of four-component and two-component quasi-relativistic approaches. First, we review our highly efficient computational scheme for four-component relativistic ab initio molecular orbital (MO) methods over generally contracted spherical harmonic Gaussian-type spinors (GTSs). Illustrative calculations, which are performed with a new four-component relativistic ab initio molecular orbital program package REL4D, clearly show the efficiency of our computational scheme by the Dirac-Hartree-Fock (DHF) and Dirac-Hartree-Fock (DKS) methods. Next, in the two-component quasi-relativistic framework, two relativistic Hamiltonians, RESC and higher order Douglas-Kroll (DK) Hamiltonians, are introduced, and several illustrative calculations are shown. Numerical results for several systems show that good accuracy can be obtained with our third-order DK (DK3) Hamiltonian.  相似文献   

16.
A procedure is suggested to build up contracted basis sets for relativistic atomic and molecular Hartree-Fock calculations when corresponding non-relativistic results are available or easy to obtain. Significant reductions of the size of relativistic Fock-Roothaan matrices are expected.  相似文献   

17.
The influence of relativistic effects on the properties of uranium hexafluoride was considered. Detailed comparison of the spectrum of one-electron energies obtained in the nonrelativistic (by the Hartree-Fock method), relativistic (by the Dirac-Fock method), and scalar-relativistic (using a relativistic potential of the uranium atom core) calculations was carried out. The methods of optimization of atomic basis in the LCAO calculations of molecules and crystals are discussed which make it possible to consider distortion of atomic orbitals upon the formation chemical bonds. The influence of the atomic basis optimization on the results of scalar-relativistic calculations of the molecule UF6 properties is analyzed. Calculations of the electronic structure and properties of UO2 crystals with relativistic and nonrelativistic pseudopotentials are fulfilled.  相似文献   

18.
We present the results of relativistic and non-relativistic self-consistent field and configuration interaction calculations for the gold atom, using the spin-free no-pair Hamiltonian in a basis set expansion. A new basis set for the gold atom is discussed and its results in relativistic and non-relativistic self-consistent field calculations are compared to those of numerical Dirac-Hartree-Focic and Hartree-Fock calculations, respectively. Excitation energies, electron affinities and ionization potentials were calculated using a multi-reference configuration interaction technique and are in reasonable agreement with experiment in the relativistic case.  相似文献   

19.
An approach to the development of a systematic sequence of relativistic approximations is reviewed. The approach depends on the atomically localized nature of relativistic effects, and is based on the normalized elimination of the small component in the matrix modified Dirac equation. Errors in the approximations are assessed relative to four-component Dirac-Hartree-Fock calculations or other reference points. Projection onto the positive energy states of the isolated atoms provides an approximation in which the energy-dependent parts of the matrices can be evaluated in separate atomic calculations and implemented in terms of two sets of contraction coefficients. The errors in this approximation are extremely small, of the order of 0.001 pm in bond lengths and tens of microhartrees in absolute energies. From this approximation it is possible to partition the atoms into relativistic and nonrelativistic groups and to treat the latter with the standard operators of nonrelativistic quantum mechanics. This partitioning is shared with the relativistic effective core potential approximation. For atoms in the second period, errors in the approximation are of the order of a few hundredths of a picometer in bond lengths and less than 1 kJ mol(-1) in dissociation energies; for atoms in the third period, errors are a few tenths of a picometer and a few kilojoule/mole, respectively. A third approximation for scalar relativistic effects replaces the relativistic two-electron integrals with the nonrelativistic integrals evaluated with the atomic Foldy-Wouthuysen coefficients as contraction coefficients. It is similar to the Douglas-Kroll-Hess approximation, and is accurate to about 0.1 pm and a few tenths of a kilojoule/mole. The integrals in all the approximations are no more complicated than the integrals in the full relativistic methods, and their derivatives are correspondingly easy to formulate and evaluate.  相似文献   

20.
The efficient relativistic Dirac-Hartree-Fock (DHF) and Dirac-Kohn-Sham (DKS) methods are proposed by an application of the pseudospectral (PS) approach. The present PS-DHF/DKS method is a relativistic extension of the PS-HF/KS method of Friesner, though we aim at higher numerical accuracy by elimination of superfluous arbitrariness. The relativistic PS-DHF/DKS method is implemented into our REL4D programs. Several PS applications to molecular systems show that the relativistic PS-DHF/DKS approach is more efficient than the traditional approach without a loss of accuracy. The present PS-DKS method successfully assigns and predicts the photoelectron spectra of hexacarbonyl complexes of tungsten and seaborgium theoretically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号