首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoluminescence spectrum and action spectrum for the photooxidation of orthovanadate-like (V=O)O3 species exhibiting photoluminescence at 520 nm indicate that the triplet excited state T1 of the orthovanadate-like species, which is formed from the singlet excited states S1 and S2 by intersystem crossing, is directly involved in the photooxidation of cyclohexane into cyclohexanone in the presence of molecular oxygen.  相似文献   

2.
Abstract— The acridine and phenanthridine hydroperoxides 3 and 7 were synthesized as photochemical hydroxyl radical sources for oxidative DNA damage studies. The generation of hydroxyl radicals upon UVA irradiation (Λ. = 350 nm) was verified by trapping experiments with 5,5-di-methyl-1-pyrroline N -oxide and benzene. The enzymatic assays of the damage in cell-free DNA from bacteriophage PM2 caused by the acridine and phenanthridine hydroperoxides 3 and 7 under near-UVA irradiation revealed a wide range of DNA modifications. Particularly, extensive single-strand break formation and DNA base modifications sensitive to formamidopyrimidine DNA glycosylase (Fpg protein) were observed. In the photooxida-tion of calf thymus DNA, up to 0.69±0.03% 8-oxo-7,8-dihydroguanine was formed by the hydroperoxides 3 and 7 on irradiation, whose yield was reduced up to 40% in the presence of the hydroxyl radical scavengers mannitol and fert-butanol. The acridine and phenanthridine hydroperoxides 3 and 7 also induce DNA damage through the type I photooxidation process, for which photoinduced electron transfer from 2'-deoxyguanosine to the singlet states of 3 and 7 was estimated by the Rehm-Weller equation to possess a negative Gibb's free energy of cα -5 kcal/ mol. Control experiments with the sensitizers acridine 1 and the acridine alcohol 4 in calf thymus and PM2 DNA confirmed the photosensitizing propensity of the UVA-ab-sorbing chromophores. The present study emphasizes that for the development of selective and efficient photochemical hydroxyl radical sources, chromophores with low photosensitizing ability must be chosen to avoid type I and type II photooxidation processes.  相似文献   

3.
Porphycene and a tetra-n-propyl derivative remained unaltered on irradiation in toluene at room temperature. Quantum yields of fluorescence, S T intersystem crossing, and singlet molecular oxygen sensitization, as well as lifetimes of the singlet and triplet excited states were measured. In view of their structural relationship to porphyrin, their high absorption above 620 nm, their stability towards photooxidation, and their high quantum yields of fluorescence and singlet oxygen sensitization, these compounds qualify as potential agents for tumor marking and photodynamic therapy.  相似文献   

4.
The dark and photosensitized (366 nm) hemolytic effects of imperatorin and its photooxidation products, the hydroperoxides I and II as well as the corresponding alcohol of the hydroperoxide I (imperatorin alcohol), were studied on human erythrocytes. Imperatorin was shown to photosensitize hemolysis, its fluence (D) dependence of the rate of photohemolysis (V) followed the equation V = V0 + aD2 + bD1/2, in which V0 is the dark hemolysis rate and a and b are constants. At fluences below 200 kJ/m2, the main hemolytic contribution derives from the bD1/2 component, which is due to the in situ formation of the imperatorin hydroperoxides, while at fluences higher than 200 kJ/m2, the main contribution corresponds to the aD2 component due to the two-photon damage of cell membranes. Hydroperoxides I and II induce oxyhemoglobin cross-linking, as well as its conversion to methemoglobin and hemichrome. These reactions involve hydroxyl and alkoxy radicals, as the hemolysis and oxyhemoglobin conversion could be inhibited by t-butanol and butylated hydrotoluene. For comparison, the dark hemolytic effect of the imperatorin alcohol was approximately 10-fold less than of the hydroperoxides.  相似文献   

5.
Abstract— Picosecond 530 nm actinic and 1242 nm probe light pulses have been used to measure the kinetics of energy transfer and photooxidation in Rhodopseudomonas sphaeroides R-26 reaction centers. The energy transfer rate between bacteriopheophytin and the bacteriochlorophyll dimer is 1.0 ± 0.3 ± 1011s-land photooxidation of the dimer occurs within 5 ps after the dimer reaches the first excited singlet state. Using these parameters in a simple model we are able to explain the odd result that the number of reaction centers oxidized by a saturating 530 nm actinic picopulse is only 60% of the number oxidized by a saturating CW light source.  相似文献   

6.
During the photo-oxidation at 254 nm of a styrene-butadiene copolymer, the quenching by hydroperoxides of singlet excited states of phenyl groups (and to a small extent of excimers) yield their photosensitized decomposition. The created radicals initiate hydroperoxide propagation reaction into the polymeric bulk. The natures of the various phases, through which this chain reaction develops, depend on the amount of available polymeric sites which can be easily oxidized (particularly allylic positions). Moreover, according to their behaviour, hydroperoxides have been placed in two classes: the “active” groups which are located at a stationary concentration in the vicinity of phenyl groups and the “inactive” groups which are outside this active sphere and remain stable after formation because they are not involved in the primary photophysical process.  相似文献   

7.
Singlet molecular oxygen is a reactive species involved in biological oxidative processes. The major cellular targets of singlet molecular oxygen are unsaturated fatty acids in the membrane, as well as nucleic acids and proteins. The aim of this study was to investigate whether lipids and commercial hydroperoxides generate singlet molecular oxygen, in presence of nitronium and activated nitronium ion. For this purpose, monomol light emitted in the near-infrared region (λ = 1270 nm) was used to monitor singlet molecular oxygen decay in different solvents, with different hydroperoxides and in the presence of azide. Direct measurements of the singlet molecular oxygen spectrum at 1270 nm recorded during the reaction between lipids and commercial hydroperoxides and nitronium ions unequivocally demonstrated the formation of this excited species.  相似文献   

8.
Oxidative damage to plasmenyl-type lipids contributes to decreased membrane barrier function, loss of membrane structure and formation of nonlamellar defects in membrane bilayers. Previous results from this laboratory have shown that membrane-soluble sensitizers (e.g. zinc phthalocyanine and bacteriochlorophyll a) mediate the photooxidation of palmitoyl plasmenylcholine (1-O-alk-1'-Z-enyl-2-palmitoyl-sn-glycero-3-phosphocholine; PPlsC) vesicles with the subsequent creation of lamellar defect structures, vesicle contents leakage and membrane-membrane fusion. Because plasmalogen lipids are significant components of sarcoplasma and myelin membranes, we sought to characterize the products of their photooxidation. This study focuses on the photooxidation of PPlsC vesicles in the presence of the water-soluble sensitizer, aluminum phthalocyanine tetrasulfonate (AlPcS4(4-)). Attack of photogenerated singlet oxygen on the 1-O-alkenyl ether linkage of PPlsC lipids was expected to generate dioxetane- and ene-type photoproducts. The products formed during continuous aerobic irradiation (28 mW/cm2, (610 nm) of PPlsC vesicles in the presence of AlPcS4(4-) were separated via reverse-phase high-performance liquid chromatography (HPLC) with electrochemical detection (ECD) or evaporative light-scattering detection (ELSD). Photooxidized dipalmitoyl-phosphatidylcholine-cholesterol vesicles (control) were used to optimize the HPLC-ECD conditions, using 7 alpha-hydroperoxy-cholesterol as standard. HPLC-ECD was found to be most sensitive for PPlsC hydroperoxides, whereas HPLC-ELSD was more sensitive for nonhydroperoxide photoproducts. The three major photoproducts formed during vesicle irradiation were isolated via preparative HPLC and then characterized by 1H-nuclear magnetic resonance and mass spectrometry. 1-Formyl-2-palmitoyl-sn-glycero-3-phosphocholine and 1-hydroxy-2-palmitoyl-sn-glycero-3-phosphocholine were identified as dioxetane cleavage products that coeluted at approximately 3 min. The second fraction (retention time [RT] = 48 min) was identified as a PPlsC allylic hydroperoxide. The third photoproduct, eluting at RT = 64 min, is tentatively identified as an oxidation product arising from allylic hydroperoxide degradation via Hock rearrangement or free radical decomposition.  相似文献   

9.
The ability of tryptophan in peptides to photosensitize the oxidation of methyl linoleate (ML) was evaluated. Purified ML was irradiated (λ > 270 nm) alone or in the presence of a tryptophan-containing peptide in ethanol solution. Oxidation was monitored by measuring the dienc hydroperoxides formed from ML by high performance liquid chromatography. N-acetylphenylalanyltryptophan (NAPT) and N-acetyltryptophan were about 2-fold more effective as photosensitizers than leucyltryptophan and tryptophylleucine. N-acetylphenylalanyltryptophan photolyzed in ethanol to form multiple photoproducts including N-formylkynurenine-type compounds. However, the NAPT photoproducts did not photosensitize the oxidation of ML and N-formylkynurenine was about 8% as effective as NAPT. Sodium azide partially quenched the photooxidation sensitized by NAPT.  相似文献   

10.
Time-resolved photolysis studies of riboflavin (RF) were carried out in the presence and absence of alpha-, betaH- and betaL-crystallins of bovine eye lens. The transient absorption spectra, recorded 5 micros after the laser pulse, reveal the presence of the absorption band (625-675 nm) of the RF neutral triplet state (tau = 42 micros) accompanied by the appearance of a long-lived absorption (tau = 320 micros) in the 500-600 nm region due to the formation of the semireduced RF radical. The RF excited state is quenched by the crystallin proteins through a mechanism that involves electron transfer from the proteins to the flavin, as shown by the decrease of the triplet RF band with the concomitant increase of the band of its semireduced form. Tryptophan loss on RF-sensitized photooxidation of the crystallins when irradiated with monochromatic visible light (450 nm) in a 5% oxygen atmosphere was studied. A direct correlation was found between the triplet RF quenching rate constants by the different crystallin fractions and the decomposition rate constants for the exposed and partially buried tryptophans in the proteins. The RF-sensitized photooxidation of the crystallins is accompanied by the decrease of the low molecular weight constituents giving rise to its multimeric forms. A direct correlation was observed between the initial rate of decrease of the low molecular weight bands corresponding to the irradiated alpha-, betaH- and betaL-crystallins and the quenching constant values of triplet RF by the different crystallins. The correlations found in this study confirm the importance of the Type-I photosensitizing mechanism of the crystallins, when RF acts as a sensitizer at low oxygen concentration, as can occur in the eye lens.  相似文献   

11.
最近在“氧化的”TiO2(即表面无氧空位和Ti3+)上进行的CO光催化氧化研究发现:室温下,以黑光灯(峰值λ=365nm)光照时,“氧化的”TiO2无CO催化氧化的活性,但以杀菌灯(峰值λ=253.7nm)光照时,则对CO产生显著的催化活性.参照CO在过渡金属表面的催化氧化机理,对本现象进行了解释:黑光灯照时,O2在TiO2表面只生成O2(a)-,而O2(a)-不能使CO氧化,只有以杀菌灯照时,TiO2表面产生O(a)-,CO氧化反应才能发生.  相似文献   

12.
Zhang Y  Ley KD  Schanze KS 《Inorganic chemistry》1996,35(24):7102-7110
A photochemical and photophysical investigation was carried out on (tbubpy)Pt(II)(dpdt) and (tbubpy)Pt(II)(edt) (1 and 2, respectively, where tbubpy = 4,4'-di-tert-butyl-2,2'-bipyridine, dpdt = meso-1,2-diphenyl-1,2-ethanedithiolate and edt = 1,2-ethanedithiolate). Luminescence and transient absorption studies reveal that these complexes feature a lowest excited state with Pt(S)(2) --> tbubpy charge transfer to diimine character. Both complexes are photostable in deoxygenated solution; however, photolysis into the visible charge transfer band in air-saturated solution induces moderately efficient photooxidation. Photooxidation of 1 produces the dehydrogenation product (tbubpy)Pt(II)(1,2-diphenyl-1,2-ethenedithiolate) (4). By contrast, photooxidation of 2 produces S-oxygenated complexes in which one or both thiolate ligands are converted to sulfinate (-SO(2)R) ligands. Mechanistic photochemical studies and transient absorption spectroscopy reveal that photooxidation occurs by (1) energy transfer from the charge transfer to diimine excited state of 1 to (3)O(2) to produce (1)O(2) and (2) reaction between (1)O(2) and the ground state 1. Kinetic data indicates that excited state 1 produces (1)O(2) efficiently and that reaction between ground state 1 and (1)O(2) occurs with k approximately 3 x 10(8) M(-)(1) s(-)(1).  相似文献   

13.
Nanocomposites containing hydrotalcite and prepared by melt compounding with polypropylene were UV-light irradiated in artificial accelerated conditions representative of solar irradiation (λ > 300 nm) at 60 °C in air. The chemical modifications resulting from photooxidation were followed by IR and UV-visible spectroscopies.The presence of hydrotalcite was shown to change the global rate of photooxidation of polypropylene by reducing the oxidation induction time and increasing the oxidation rate. The differences of the oxidation induction time disappeared after solvent extraction of the antioxidant. They were attributed to a quenching of the antioxidant activity resulting from a migration onto the filler surface induced by the preferential interaction with the polar hydrotalcite. Extracting the antioxidant did not change the oxidation rate at the permanent regime. The increase of the oxidation rate was attributed to transition metal ions, present as impurities in hydrotalcite, which can accelerate the oxidation of the polymer by various mechanisms including a catalysed decomposition of hydroperoxides.  相似文献   

14.
A broadband visible light-absorbing [70]fullerene-BODIPY-triphenylamine triad (C70-B-T) has been synthesized and applied as a heavy atom-free organic triplet photosensitizer for photooxidation. By attaching two triphenylmethyl amine units (TPAs) to the π-core of BODIPY via ethynyl linkers, the absorption range of the antenna is extended to 700 nm with a peak at 600 nm. Thus, the absorption spectrum of C70-B-T almost covers the entire UV–visible region (270–700 nm). The photophysical processes are investigated by means of steady-state and transient spectroscopies. Upon photoexcitation at 339 nm, an efficient energy transfer (ET) from TPA to BODIPY occurs both in C70-B-T and B-T, resulting in the appearance of the BODIPY emission at 664 nm. Direct or indirect (via ET) excitation of the BODIPY-part of C70-B-T is followed by photoinduced ET from the antenna to C70, thus the singlet excited state of C70 (1C70*) is populated. Subsequently, the triplet excited state of C70 (3C70*) is produced via the intrinsic intersystem crossing of C70. The photooxidation ability of C70-B-T was studied using 1,5-dihydroxy naphthalene (DHN) as a chemical sensor. The photooxidation efficiency of C70-B-T is higher than that of the individual components of C70-1 and B-T, and even higher than that of methylene blue (MB). The photooxidation rate constant of C70-B-T is 1.47 and 1.51 times as that of C70-1 and MB, respectively. The results indicate that the C70-antenna systems can be used as another structure motif for a heavy atom-free organic triplet photosensitizer.  相似文献   

15.
Abstract
We report here the resonance Raman studies of photooxidation of free base tetraphenylporphin (H2TPP) in the presence of external electron acceptors such as CCl4 and chloranil under selective laser irradiation. From the dependence of photooxidation on the concentration of electron acceptors, polarity of solvents, excitation lines and temperatures, we have inferred that a weak triplet exciplex formed between the excited H2TPP and electron acceptor in non-polar solvents serves as transient species and the light-induced intermolecular charge transfer from H2TPP to the electron acceptor is the primary process involved in photooxidation. Observation of partial photooxidation in the rigid matrix at low temperatures has been interpreted to be due to long-range quantum mechanical electron tunneling process. Almost complete photooxidation is observed in a soft matrix as the donor and acceptor molecules can attain favorable relative orientation and separation for electron transfer during the excited state lifetime of the exciplex.  相似文献   

16.
Abstract —We report here the resonance Raman studies of photooxidation of free base tetraphenylporphin (H2TPP) in the presence of external electron acceptors such as CCl4 and chloranil under selective laser irradiation. From the dependence of photooxidation on the concentration of electron acceptors, polarity of solvents, excitation lines and temperatures, we have inferred that a weak triplet exciplex formed between the excited H2TPP and electron acceptor in non-polar solvents serves as transient species and the light-induced intermolecular charge transfer from H2TPP to the electron acceptor is the primary process involved in photooxidation. Observation of partial photooxidation in the rigid matrix at low temperatures has been interpreted to be due to long-range quantum mechanical electron tunneling process. Almost complete photooxidation is observed in a soft matrix as the donor and acceptor molecules can attain favorable relative orientation and separation for electron transfer during the excited state lifetime of the exciplex.  相似文献   

17.
The acyl endoperoxide arteannuin H, recently reported as a novel natural product from Artemtsia annua, has been obtained in two steps from the photooxidation of dihydroartemisinic acid, thereby confirming biogenetic speculation regarding its derivation from a secondary allylic hydroperoxide. The little studied 3,2-rearrangement reaction of such allylic hydroperoxides is also discussed.  相似文献   

18.
Disulfide bonds play an important role in determining the structure and stability of proteins and nanoparticles. Despite extensive studies on the oxidation of thiols for the synthesis of disulfides, little is known about the photooxidation of thiols, which may be a clean, safe, and economical alternative to the use of harmful and expensive metal-containing oxidants and catalysts. In this paper, we report the photooxidative coupling of thiophenol derivatives to disulfides. Para-substituted thiophenol derivatives, p-SHC(6)H(4)X (X = NO(2), COOH, Cl, and OCH(3)), are irradiated, and disulfides, X(2)(C(6)H(4))(2)S(2), are identified as the major photoproducts using Raman, UV-vis, IR, and NMR spectroscopies. For p-nitrothiophenol (pNTP), 4,4'-dinitrodiphenyldisulfide (DNDPDS) is produced in 81% yield. The product yield changes with pH, being the highest at pH ≈ 5, suggesting that both neutral thiol and anionic thiolate forms of pNTP are required for the photoreaction to occur. Excitation at 455 nm, at which the thiolate form of pNTP absorbs strongly, leads to the largest yield of DNDPDS, whereas very little DNDPDS is formed by excitation of the thiol form of pNTP at 325 nm. Our observations suggest that the photooxidation occurs via collisions of the electronically excited thiolate form of pNTP with the surrounding neutral thiol forms of pNTP. The photooxidation reaction happens regardless of the electron-withdrawing or electron-donating properties of the substituents if the pH and excitation wavelengths are properly chosen. The versatility of light and generality of the photooxidative coupling reaction of thiophenol derivatives may open new possibilities for selective and site-specific photocontrol of disulfide bond formation in biology and nanomaterial science as well as in synthetic chemistry.  相似文献   

19.
The two reduced forms of NADP+, NADPH and its dimer (NADP)2, on irradiation in aqueous medium at 365 nm, are converted to enzymatically active NADP+, with accompanying formation of H2O2. The rate photooxidation of NADPH is strongly dependent on the presence of oxygen, but that of (NADP)2 is similar under aerobic and anaerobic conditions. In the presence of oxygen, but not in its absence, O2-. is an intermediate in the reaction. Generation of H2O2 under anaerobic conditions, confirmed by the fact that presence of peroxidase in irradiated solutions of (NADP)2 enhances photooxidation of the latter, is ascribed to attack on water of the excited dimer. Under anaerobic conditions at pH 9.5, Fe(EDTA)2+ and Fe(CN)4-(6) increase the rate of photooxidation of NADP dimer two-fold. gamma-Irradiation of (NADP)2 at pH 9.5 in the presence of N2O results in 80% conversion to enzymatically active NADP+. A mechanism for photooxidation of (NADP)2 under anaerobic conditions is suggested, and some relevant biological implications are presented.  相似文献   

20.
Transition‐metal‐free synthesis of β‐alkoxy monohydroperoxides via aerobic photooxidation using an acridinium photocatalyst was developed. This method enables the synthesis of some novel hydroperoxides. The peroxide source is molecular oxygen, which is cost‐effective and atomically efficient. Magnesium oxide plays an important role as a base in the catalytic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号