首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Formation of Organosilicon Compounds. 94. Crystal Structure of Hexaphenyltrisilacyclohexane Si3C39H36 1.1.3.3.5.5-Hexaphenyl-1.3.5-trisilacyclohexane crystallizes monoclinically in the space group P21/n (No. 14) with a = 1718.3 pm, b = 1769.2 pm, c = 1091.4 pm, β = 90.72° and Z = 4 molecules per unit cell. The trisilacyclohexane sceleton is present in a flattened twist boat conformation with mean bond angles of 110.0° at the Si atoms and 117.9° at the C atoms, respectively. The mean bond lengths are d(Si? C) = 187.1 pm in the six membered ring and 187.9 pm to the substituents.  相似文献   

2.
Formation and Structure of iso-Tetraphosphane P[P(SiMe3)Me]3 The reaction of MeP(SiMe3)2 with PCl3 (molar ratio 3:1, ?78°C, n-pentane) yields by cleaving of the P? Si bond P[P(SiMe3)Me]3 1 with Cl2P? P(SiMe3)Me and ClP[P(SiMe3)Me]2 as intermediates. The reaction rate decreases by the increase of phosphorylation. The last reaction step (formation of 1 ) occurs while warming up to room temperature. 1 forms colorless hexagonal crystals, melting point 65 ± 1°C. Tris(trimethylsilyl-methyl-phosphino)phosphane 1 crystallizes monoclinically in the space group Cc (No. 8) with Z = 8 formula units per unit cell. The molecules possess approximated C3 symmetry and have (RRR) and (SSS) configurations, respectively. The bond distances d?(P? P) = 220.1 pm, d?(P? C) = 186.5 pm, and d?(P? Si) = 225.2 pm are normal and within the expected range of known distances. According to repulsive interactions between the non bonded electron pairs of the terminal P atoms and the protons of the methyl groups the angles at the central and terminal P atoms are enlarged to ? P P P = 105.1° and ? P P C = 106.9°, respectively.  相似文献   

3.
Formation of Organosilicon Compounds. 97. About the Influence of the Si-Substituents (Me, Cl) upon the Formation and the Reactions of Ylides 1,3-disilapropanes with different grade of chlorination or methylation at the silicon atoms and containing a CCl2 group cleave the Si? P bond of Me3SiPMe2. By subsequent rearrangement ylides with ? PMe2Cl group are formed. The reactivity of the CCl2 group depends on the grade of Si-chlorination resp. Si-methylation. Si-methylation decreases the reactivity of the CCl2 group. The reaction of 1,3-disilapropanes and Me3SiPMe2 (molar ratio 1:1) runs in a sequence shown in “Inhaltsübersicht”. Ylid C is able either to react with the initial compound A forming B, or in competition decomposes forming D. Reacting Si-perchlorinated carbosilanes, the decomposition forming D is not to be observed. In Si-methylated ylides like (Me3Si)2C?PMe2? PMe2 and (Me3Si)2C?PMe2? P(Me)SiMe3 the ylid carbon atom is able to abstract a proton of the P? CH3 group resp. P? H groups of the trivalent phosphorus forming (Me3Si)2C(H)PMe2. The rearrangement is proved by deuterated derivatives. The different behaviour is due to the increased basicity of the ylid-C atom in Si-methylated phosphorus ylides. Quite the same behaviour show the phosphorus ylides of 1,3,5-trisilacyclohexane.  相似文献   

4.
Formation of Organosilicon Compounds. 83. Formation, Reactions, and Structure of Ylides Generated from Perchlorinated Carbosilanes The CCl-moiety in perchlorinated carbosilanes as (Cl3Si)2 a, Cl3Si? CH2? SiCl2? CCl2? SiCl3 b, (Cl3Si? CCl2)2SiCl2 c or (Cl2Si? CCl2)3 d, e.g., cleaves the Si? P bond of me3Si? Pme2 e (me = CH3); and by subsequent rearrangement ylides are formed. Such, treating e with a yields (Cl3Si)2CPme2Cl 1, which also results from the reaction of me2P? Pme2 with a. The ylides also can be obtained by means of treating the carbosilanes a, b, c or d with LiPme2. Thus, c with one mole of LiPme2 yields Cl3Si? CCl2? SiCl2? C(Pme2Cl)? SiCl3 or Cl3Si? C(Pme2Cl)? SiCl2? C(Pme2Cl)? SiCl3, resp., with two moles of LiPme2. The corresponding Si-methylated derivates do not form ylides; (me3Si)2CCl2, e.g., with e in benzene yields me3Si? CH(Pme2)? Sime3. One mole of Lime methylates 1 to yield (Cl3Si)2CPme3 11. With either LiPme2, me3Si? Pme2 or Me2P? Pme2 1 forms (Cl3Si)2CPme2-Pme2. Reacting 1 with CH3OH/(C2H5)2NH, (Cl3Si)[SiCl2(OCH3)]CPme2(OCH3) is formed. Ylides also result from the reactions of partially C-chlorinated 1,1,3,3,5,5-hexachloro-1,3,5-trisilacyclohexanes with me3Si? Pme2, (Cl2Si? CCl2)3 with three moles of me3Si? Pme2 or LiPme2, resp., yields (Cl2Si? CPme2Cl)3 16, the 1,1,3,3,5,5-Hexachlor-2,4,6-tris(chlordimethylphosphoranyliden)-1,3,5-trisilacyclohexan, which crystallizes with one mole of monoglyme. X-ray structure determinations revealed that 1, 11 and 16 are planar. As well the (P? C) as the (Si? C) bond lengths are remarkably shortened; in 1 (P? C) to 173.3 pm, (Si? C) to 173.3 pm, (Si? C) to 179.5 pm, in 16 (P? C) to 168.7 pm, (Si? C) to 180 pm. The (Si? C) and (P? C) bond orders amount to about 1.33, and are relatively equally distributed. Therefore, the charge of the formal carbanion is equally distributed, which shall be expressed by means of the following kind of writing for 1 and 16 see “Inhaltsübersicht”.  相似文献   

5.
Transition Metal Phosphido Complexes. VIII. X-Ray Diffraction Studies of Transition Metal Phosphorus Four- and Six-Membered Ring Complexes. Structures of [(CO)4MnPH2]2, [(CO)4MnPH2]3, and [cpNiPH2]3 [(CO)4MnPH2]2 1 crystallizes triclinic in the space group P1 with a = 680.4 pm, b = 706.4 pm, c = 919.1 pm, α 110.5°, β = 91.92°, γ 115.65°, and Z = 1 formula unit. The molecule exhibits a centrosymmetrical structure. The bond angles within the planar four-membered (Mn? P)2-ring are 76.1° at the Mn atoms and 103.9° at the P atoms, respectively. The average Mn? P bond distance is found to be 235.1 pm. [(CO)4MnPH2]3 2 crystallizes monoclinic in the space group P2/n with a = 905.2 pm, b = 974.8 pm, c = 1264.2 pm, β = 109.1°, and Z = 2 formula units. The framework of the six-membered (Mn? P)3-ring can be described as having a twist boat conformation. The average endocyclic bond angles are with 89.1° at the Mn atoms and 130.1° at the P atoms, respectively, largely widened compared to 1 . The average Mn? P bond distance, which is found to be 238.5 pm, is also slightly increased compared to 1 . [cpNiPH2]3 3 crystallizes rhombohedral in the space group R3. The cell constants (hexagonal setting) are a = b = 1686.1 pm, c = 561.1 pm and Z = 3 formula units. The six-membered (Ni? P)3-ring exhibits a chair conformation. The endocyclic bond angles are with 92.3° at the Ni atoms and 124.3° at the P atoms, respectively, comparable with those of the six-membered ring compound 2 . The Ni? P bond distance is found to be 215.2 pm. The eyclopentadienyl ligands are disordered and have been refined as rigid groups.  相似文献   

6.
Formation of Organosilicon Compounds. 95. Crystal Structure of a Hexadecamethyloctasila-dispiro [5.1.5.1]tetradecane, Si8C22H56 1,1,3,3,5,5,7,7,9,9,11,11,13,13,14,14-Hexadecamethyl-1,3,5,7,9,11,13,14-octasila-dispiro[5.1.5.1]tetradecane crystallizes monoclinically in the space group P21/n (No. 14) with a = 1352.4 pm, b = 1215.5 pm, c = 1001.2 pm, β = 92.11° and Z = 2 molecules per unit cell. The dispiro system is formed by a central disilacyclobutane and two C-spiro connected trisilacyclohexane rings. The symmetry of the molecule is 2/m, with flattened six membered rings in chair conformation. The Si? C bonds are enlarged (192 pm) at the strained spiro region whereas the Si? C bonds are distinctly shortened (186 pm) at the opposite Si atoms in the six membered rings.  相似文献   

7.
Formation of Organosilicon Compounds. 112. The Influence of Reaction Conditions on the Reaction of (Cl3Si)2CCl2 with Silicon. The Structures of 2,2,3,3,5,5,6,6-Octachloro-1,4-bis(trichlorosilyl)-2,3,5,6-tetrasilabicyclo[2.1.1]-hexane and 1,1,3,4,6,6-Hexakis(trichlorosilyl)hexatetraene While reactions of (Cl3Si)2CCl2 1 with Si(Cu) in a fluid bed at 320°C exclusively yield products by silylation of the CCl2 group in 1 does the reaction in a stirred bed preferrably give rize to chlorosilanes containing C? C double and triple bonds. Compounds 5, 6, 7, 8 and 9 in Tab. 1 belong to the first group, whereas 3 and 4 belong to the second one. The reaction of 1 with elemental copper under dehalogenation at carbon produces 3, 4 and 11 . In the reaction of 1 with CaSi2 no additional Si? C bonds are formed, exclusively chlorosilanes with multiple C? C bonds as 3, 4 and 10 were found besides of SiCl4. The bicyclo[2.1.1]hexane 6 (Tab. 1) crystallizes monoclinically in the space group C2/c (no. 15) with a = 1557.8, b = 857.4, c = 1727.3 pm, β = 104.34° und Z = 4 molecules per unit cell; the hexatetraene 10 (Tab. 1) crystallizes monoclinically in the space group C2/m (no. 12) with a = 1189.6, b = 1433.8, c = 983.5 pm, β = 98.75° pm, and Z = 2 molecules per unit cell. The skeleton of 6 is a system of high bond stress with 2-C2 symmetry. The strongly folded (138.8°) four-membered ring (sum of angles = 344.2°) and the presence of both a Si? Si bond length of 238.2 pm and a Si? Si non-bonding distance of 255.1 pm are remarkable aspects of this feature. The mean bond lengths in the bicyclic compound were found to be d(Si? C) = 190.9 pm and d(Si? C) = 185.1 pm for exo- and endocyclic bonds, respectively. The skeleton of 10 is of the symmetry 2/m-C2h. The six-membered chain is plane. The central C? C single bond length and the mean distance of the cumulated double bonds are 148.6 pm and 130.5 pm, respectively.  相似文献   

8.
Formation of Organosilicon Compounds. 92. Formation and Structure of Octamethylhexasila-hexascaphane By rearrangement and abstraction of CH4 at the presence of AlBr3 2 forms 3 , and 6 forms 7 , which is also obtained reacting 8 and 9 under the same condition. Lithination of 1, 1, 3, 5, 5, 7, 7, 9, 9-Nonamethyl-1, 3, 5, 7, 9-pentasiladecaline yields 12 , which is trapped with me3SiCl to form 6 . Convertation of 13 to 14 leads to 8 by reaction with ClSi(CH2—Sime3)3. Compound 7 is characterized by NMR and mass spectroscopy as well as X-ray structural analysis. 1, 3, 5, 7, 9, 9, 11, 11-Octamethyl-1, 3, 5, 7, 9, 11-hexasila-hexascaphane 7 crystallizes in the monoclinic space group P21/n (No. 14) with a = 3296.7 pm, b = 1536.2 pm, c = 891.9 pm, β 91.71° and Z = 8 formular units. Both crystallographic independent molecules have approximately the symmetry C2. The differences of corresponding bond lengths, bond angles and torsion angles are unimportant. But there is a distinct dependence of the Si? C bond length relative to the function of the bond in the molecule (Averages: Si? C) (endo) = 188.4 pm, Si? C (exo) = 187.6 (pm).  相似文献   

9.
Contributions to the Chemistry of Silicon-Sulfur Compounds. XXXV. The Dimeric Thallium(I)-tri-tert-butoxysilanethiolate Thallium(I)-tri-tert-butoxysilanethiolate is formed as a dimer by reaction of tri-tert-butoxysilanethiol with TlNO3. The compound crystallizes as colourless triclinic plates. F.I. mass spectra show only the mass of the dimeric species (m/e = 968), in the E.I. mass spectra, however, also the peak for the monomeric unit (m/e = 484) is observed. The molecule is of 1 /Ci symmetry. The central four-membered ring is plane, the bond distances and angles therein are d (Tl? S) = 289 pm and S/Tl/S = 91.5°. The Tl atoms are additionally coordinated by an oxygen atom of the tri-tert-butoxysilyl group (d(Tl? O) = 280 pm). The mean bond angle at the threebonded sulfur atom was found to be 90° (d(S? Si) = 207.8 pm). Related details of the structure are discussed (space group P1 ; a = 927.5 pm, b = 1395.1 pm, c = 882.1 pm; α = 108.43°, β = 116.77°, γ = 90.98°; Z = 2; R = 0.032; 2887 reflections hkl).  相似文献   

10.
Molecular and Crystal Structure of the dimeric Magnesium bis[bis(trimethylsilyl)-amide] The magnesium bis[bis(trimethylsilyl)amide] crystallizes as a dimeric molecule in the space group C2/c with {a = 1821.0(4); b = 1494.4(4); c = 1859.6(6) pm; β = 121.10(2)°; Z = 4 dimers}. The cyclic planar Mg2N2 moiety shows endocyclic NMgN angles of 95.8°. The bond lengths within this ring system to the four-coordinate, bridging nitrogen atoms Nb are 215 pm, whereas the distances between the magnesium atom and the terminal, three-coordinate nitrogen atom Nt display values of approximately 198 pm. These different coordination numbers of the nitrogen atoms affect the NSi bond length (NtSi 171, NbSi 177 pm).  相似文献   

11.
Structural Chemistry of Phosphorus-containing Chains and Rings. 2. Crystal and Molecular Structure of the Diphosphaborirane (t-BuP)2BNEt2 The three-membered P2B-heterocycles 1,2-di-tert-butyl-3-diethylamino-1,2,3-diphosphaborirane, (t-BuP)2BNEt2, crystallizes triclinic in the space group P1 with a = 935.5 pm, b = 985.4 pm, c = 987.4 pm,α = 81.55°, β = 89.40°, γ =69.07°, and Z = 2 formula units. The main structural feature is a short B? N-bond length (138.2 pm) inside a plane P2BN-group. The endocyclic bond angles are 54.0° on phosphorus and 72.0° on boron. The (average) bond lengths are P? P = 222.5 pm, P? C = 189.5 pm, P? B = 189.3 pm, B? N = 138.2 pm, N? C = 147.2 pm, C? C = 152.6 pm, and C? H = 98 pm. The geometry of the substituents ethyl and tert-butyl is quite normal.  相似文献   

12.
Structural Chemistry of Phosphorus-containing Chains and Rings. 1. Crystal Structure of the Diphosphasilirane (t-BuP)2SiPh2 The three-membered P2Si-heterocycle 1, 2-di-tert-butyl-3, 3-diphenyl-1, 2, 3-diphosphasilirane (t-BuP)2SiPh2 crystallizes monoclinic in the space group P21 with a = 1041.2 pm, b = 882.3 pm, c = 1158.1 pm, β = 91.33° and Z = 2 formula units. A special structural feature is the regular triangle built up by two P and one Si. Therefore the endocyclic bond angle at Si is as low as 60°. The average bond lengths are P? P = 222.6 pm, P? Si = 222.5 pm, P? C = 190.8 pm, Si? C = 186.6 pm, (C? C )ph = 139.0 pm, ( C? C )t-Bu = 151.7 pm. The geometry of the substituents phenyl and tert-butyl is quite normal, the last ones are slightly disordered.  相似文献   

13.
Contributions to the Chemistry of Silicon-Sulfur Compounds. XXX. Structure of Tetra-t-butoxy-1,3,2,4-dithiadisiletane Alcoholysis of silicon disulfide by t-butanol yielded the title compound. [(t-BuO)2SiS]2 crystallizes orthorhombically in the space group Pbca (no. 61) with a = 1708.4(5), b = 1560.8(3), c = 907.1(3) pm and Z = 4 molecules per unit cell. The molecule has the crystallographic 1 –Ci point symmetry and consequently the Si2S2 four-membered ring is rigid plane. The bond distances of this ring are Si? S = 214.2 and 213.1 pm and the bond angles S? Si? S = 97.8° and Si? S? Si = 82.2°. Related details of the structure are discussed.  相似文献   

14.
Contributions to the Chemistry of Silicon Sulphur Compounds. XXXIII. Structure of Bis (triphenylsilyl)sulphide The condensation of triphenylsilanethiol yielded bis(triphenylsilyl)sulphide ( 1 ). The compound is remarkable resistent to hydrolysis. 1 crystallizes monoclinically [P21/n (No. 14): a = 1707.8 pm; b = 1454.6 pm; c = 1225.0 pm; β = 97.27°; Z = 4; 4470 h k l; R = 0.053]. The molecule is bent with a bond angle Si? S? Si = 112.0°. The mean bond distances Si? S and Si? C are 215.2 pm and 187.4 pm, respectively. Some structural details are discussed.  相似文献   

15.
Structures of the l,3,5-Trisilacyclohexane-Iron Dicarbonyl-cyclopentadienyl Complexes and C3H6Si3Cl5Fe(CO)2πcp and C3H6Si3Cl4(Fe(CO2)πcp)2 Trisilapentachlorocyclo-hexyl-dicarbonylcyclopentadienyliron C3H6Si3Cl5Fe(CO)2πcp 1 and Trisilatetrachlorocyclohexyl-bis(dicarboncyclopentadienyliron)C3H6Si3Cl4(Fe(CO)2πcp)2 2 are 1,3,5-Trisilacyclohexane complexes substituted by dicarbonylcyclopentadienyliron at one and two silicon atoms of the six-membered ring, respectively. The crystal and molecular structures were determined from single crystals ( 1 ; space group P21/a (No. 14); a = 1100.5 pm; b = 2033.9 pm; c = 843.3pm; β = 98.58°; Z = 4; MoKα-radiation; 3142h k l; R = 0.036. 2 ; space group P1 ; (No. 2); a = 1231.1 pm; b = 1267.3 pm; c = 1045.9 pm; α = 113.23°; β = 83.93°; γ = 115.00°; Z = 2; Mokα-radiation; 4196 h k 1; R = 0.065). In both complexes the six-membered rings of the carbosilane ligands are in skew-boat conformation. The bond lengths Fe? Si are 226.4 pm and 228.1 pm, respectively. The distances Si? C and Si? Cl are 186 pm and 206 pm in 1 and 187 pm and 209 pm in 2 . Their different lengths depend on the position in the ligand system and can be explained with the concept of bond orders.  相似文献   

16.
Acyl- and Alkylidenephosphines. XXII. Synthesis and Structure of 1, 3-Dimethyl-2,2,4,4-tetrakis(trimethylsilylsulfano)-1,3-diphosphetane At ?30°C methylbis(trimethylsilyl)phosphine reacts with carbon disulfide to give a red adduct first which rearranges to [bis(trimethylsilylsulfano)methylidene]methylphosphine 1a . In contrast to the thermally stable phenyl derivative 1b [2], this compound with its insufficiently shielded P?C group dimerizes fast with increasing temperature. 1,3-Dimethyl-2,2,4,4-tetrakis(trimethylsilylsulfano)-1,3-diphosphetane 2a formed by this reaction, crystallizes in the triclinic space group P1 with following dimensions of the unit cell, determined at a temperature of measurement of ?80 ± 3°C: a = 1024.7(3); b = 1360.2(5); c = 1326.3(6)pm; α = 117.85(4); ß = 111.05(3); γ = 72.09(3)°; Z = 2. Due to ring folding at the P1? P2 axis of 149.1°, the molecule shows pseudosymmetry Cs. Characteristic averaged bond lengths and angles obtained at an Rw-value of 0.030, are: P? C(endocyclic) 188 and 191; P? CH3 184; C? S 183; S? Si 216 pm; C? P? CH3 105; P? C? S 113; S? C? S 114; C? S? Si 108; P? C? P 90 and C? P? C 86°.  相似文献   

17.
1,3,5,7-Tetraphospha-2,4,6,8,9-decamethyl-2,4,6,8,9-pentasila-bicyclo (3.3.1)-nonan. Structure and Reactions The structure of the title compound 1 (white quad-shaped crystals, mp. 193°C) obtained by reaction of Li2PH with Me2SiCl2, is identified by 31PNMR and mass spectra as well as X-ray structure analysis. Compound 1 crystallizes in the monoclinic space group C2/c (No. 15) with a = 1563.6(28) pm, b = 1166.7(9) pm, c = 2556.0(27) pm, = 87.07(12)° and Z = 8 formula units in the elementary cell. The molecule has approximately mm (C2v) symmetry. The boat-boat conformation characterizes 1 as direct precursor of the dodecamethyl-hexasila-tetraphospha-adamantane. The bond lengths and bond angles are normal with d?(P? Si) = 224.5 pm and d?(Si? Me) = 186.0 pm. The H bonded to P are directed exocyclic. 1 reacts with (CO)4CrNBD (NBD = Norbornadiene) (bidentate ligand) to (SiMe2)5P2(PH)2Cr(CO)4 2 while closing the structure of compound 1 to the adamantane structure via the inserted Cr(CO)4.  相似文献   

18.
Trimethylsilyl Derivatives of Vb-Elements. II. Molecular and Crystal Structure of Tetrakis(trimethylsilyl)diarsine Pale yellow tetrakis(trimethylsilyl)diarsine 1 which is easily obtained from lithium bis(trimethylsilyl)arsenide · 2 tetrahydrofurane (THF) and 1,2-dibromoethane crystallizes in a trigonal, acentric space group. The dimensions of the unit cell determined at ?95 ± 5°C are: a = 974.2(2); c = 2 080.0(4) pm; Z = 3. Considering anomalous dispersion the refinement of structural data in space group P3121 converges at an R-value of 0.060, in its enantiomorph P3221, however, at 0.031. With a dihedral angle Si2′? As′? As? Si1 of ?125.7° the molecule adopts gauche conformation. Both bis(trimethylsilyl)arsino groups are symmetry-related by the crystallographic operation of the diad. Characteristic bond lengths and angles are: As? As 245.8(1); As? Si 236.5(1) and 236.2(2) pm; Si? As? Si 100.90(5); As? As? Si 93.87(3) and 113.63(4)°. The shortest intermolecular As? As distance is found to be 662 pm.  相似文献   

19.
Formation of Organosilicon Compounds. LIV. Crystal and Molecular Structure of Tetramethyl-octasila-dodecascaphan 3,7,11,15-Tetramethyl-1,3,5,7,9,11,13,15-octasila-dodecascaphan crystallizes in the cubic space group F4 3c–T with a = 17.074(10) Å. In the unit cell there are four molecules of each of the two chiral forms which are arranged in the way of the NaCl-structure. The molecules have the symmetry 23-T with torsion angles of 19° in the twelve six-membered rings with skew-boat conformation. In the polycyclic skeleton the bond length Si? C are nearly the same (1.885(2) Å, 1.893(5) Å and 1.888(6) Å), whereas the bond length Si? CH3 is slightly shorter (1.874(8) Å). The shortest distances between H-atoms are 2.59 and 2.68 Å (intramolecular) and 2.72 and 2.73 Å (intermolecular) respectively. The thermal motions of all atoms can be reduced to a rigid-body motion. Diffuse scattering (dependent on temperature) is observed and discussed.  相似文献   

20.
Formation and Structure of the Cyclophosphanes P4(CMe3)2[P(CMe3)2]2 and P4(SiMe3)2[P(CMe3)2]2 n-Triphosphanes showing a SiMe3 and a Cl substituent at the atoms P1 and P2, like (Me3C)2P? P(SiMe3)? P(CMe3)Cl 3 or (Me3C)2P? P(Cl)? P(SiMe3)2 4 are stable only at temperatures below ?30°C. Above this temperature these compounds lose Me3SiCl, thus forming cyclotetraphosphanes, P4(CMe3)2[P(CMe3)2]2 1 out of 3 , P4(SiMe3)2[P(SiMe3)2]2 2a (cis) and 2b (trans) out of 4 . The formation of 1 proceeds via (Me3C)2P? P?PCMe3 5 as intermediate compound, which after addition to cyclopentadiene to give the Diels-Alder-adduct 6 (exo and endo isomers) was isolated. 6 generates 5 , which then forms the dimer compound 1 . Likewise (Me3C)2P? P?P-SiMe3 8 (as proven by the adduct 7 ) is formed out of 4 , leading to 2a (cis) and 2b (trans). Compound 1 is also formed out of the iso-tetraphosphane P[P(CMe3)2]2[P(CMe3)Cl] 9 , which loses P(CMe3)2Cl when warmed to a temperature of 20°C. 1 crystallizes monoclinically in the space group P21/a (no. 14); a = 1762.0(15) pm; b = 1687.2(18) pm; c = 1170.5(9) pm; β = 109.18(5)° and Z = 4 formula units in the elementary cell. The molecule possesses E conformation. The central four-membered ring is puckered (approx. symmetry 4 2m; dihedral angle 47.4°), thus bringing the substituents into a quasi equatorial position and the nonbonding electron pairs into a quasi axial position. The bond lengths in the four-membered ring of 1 (d (P? P) = 222.9 pm) are only slightly longer than the exocyclic bonds (221.8 pm). The endocyclic bond angles \documentclass{article}\pagestyle{empty}\begin{document}$ \bar \beta $\end{document}(P/P/P) are 85.0°, the torsion angles are ±33° and d (P? C) = 189.7 pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号