首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anab initio study of the relative stability for the states2 A 1g and2 E g of C2H 6 + has been carried out. The results of the Open Shell Restricted Hartree-Fock calculations lead to assign the2 A 1 g as the ground state of the molecule in agreement with previous SCF calculations.The correlation energy associated to both states has been calculated within the correlation hole model and the results, contrary to those obtained from Configuration Interaction calculations, do not alter qualitatively the conclusions from SCF.  相似文献   

2.
3.
The possible Cs, C2v, and C∞v structures of AlO2 corresponding to the two lowest electronic states which dissociate into the neutral Al(2P) and O2(3Σg?) fragments have been investigated at the ab initio self-consistent field (SCF) and CI levels using nonempirical pseudopotentials. The most stable structure corresponds to a C2v symmetry in the 2A2 electronic state. However, this structure presents the three-center three-electron Hartree-Fock instability and CASSCF calculations were necessary to unequivocally characterize it as true minimum. Moreover, only another stable structure, of C2v geometry, was found to be a minimum, corresponding to a low-lying excited state of 2A1 symmetry. The optimized C∞v structures were not minima on the corresponding potential energy surfaces and no evidence of any stable Cs structure was found. Calculating values are compared with the different experimental data obtained from the reaction of Al and O2 in frozen gas inert matrices.  相似文献   

4.
Both ab initio and semiempirical electronic structure calculations are used to investigate the molecular and electronic structures and eneregetic stabilities of an unusual bridged compound with the general formula [Y? SiH3? X? SiH3? Y]?, with Y = H or F and X = H, CH3, NH2, OH, F, or Cl. Most of these bridged anions are quite stable relative to YSiH3 + XSiH3Y?, and the stability is predicted to increase considerably when Y = H is replaced with Y = F.  相似文献   

5.
Ab initio self-consistent-field (SCF ) and configuration interaction (CI ) calculations on the ground and excited states of carbonyl fluoride (F2CO) were carried out at its experimental ground-state equilibrium geometry. Vertical transition energies deduced from the CI results provide assignments for the electronic systems I–IV, experimentally observed by Workman and Duncan. The singlet excited state, 1A1 (π→π*), is found to be a mixed valence–Rydberg state and to he 1 to 1.2 eV above the suggested experimental value, irrespective of the choice of the basis used for the CI calculations.  相似文献   

6.
Non-empirical LCAO MO SCF calculations are reported on cross sections through the C2H4Cl+ system and comparisons are drawn with the C2H5+ and C2H4F+ systems. Barriers to rotation in the classical 1- and 2-substituted ethyl cations have been computed and an investigation made of the bridged chloronium and fluoronium ions. The results suggest that the relative stabilities of bridged ions with respect to the corresponding classical 2-substituted ethyl cations increase in the order H < F < Cl. The results are discussed in terms of available experimental data and consideration given to correlation and solvation energy effects.  相似文献   

7.
Ab initio methods have been used to calculate the ground and excited states of “normal” and “hyper” porphyrins. Perturbation theory and CI methods were used to determine differential ground and excited-state correlation effects for [Pv(P)F2]+ and [PIII(P)]+. A comparison is made to the INDO /S /CI predicted wavefunctions and spectra and to the experimental spectra of closely related molecules. The “hyper” [PIII(P)]+ calculations show some very low energy electronic transitions which provide an explanation for an anomalous “red” band in the spectrum and for the lack of fluorescence. Ab initio calculations also predict that (1) the lowest energy 1A1 state is a two-configuration wavefunction which can be described as a diradical, (2) the two lowest-energy singlet excited states are double excitations from the closed shell SCF configuration, and (3) a 3B2 state is very close in energy to the lowest 1A1 state.  相似文献   

8.
SCF and MC-SCF/CI calculations were carried out on the low-lying electronic states of NO2, NO 2 + and NO 2 , using a double-zeta quality basis set of contracted Gaussian functions. The calculations were performed primarily at the equilibrium geometry (R NO = 2.25 ao, ONO=134 °) of theX 2 A 1 state of NO2. SCF calculations on NO 2 + in a linear conformation were also performed. Results are presented and compared with experiment and other calculations.Research supported in part by Air Force Delivery Orders F33615-72-M-5015 and MIPR889474-00117 and Air Force Office of Scientific Research and in part by the United States Energy Research and Development Administration.  相似文献   

9.
Ab initio electronic structure calculations are reported for low-lying electronic states, 1A1, 1A2, 3A2, 1B1, 3B1, 1B2, and 3B2 of the FNO2 molecule. Geometric parameters for the ground state 1A1 are predicted by MRSDCI calculations with a double-zeta plus polarization basis set. The vertical excitation energies for these electronic states are determined using MRSDCI/DZ+P calculations at the ground-state equilibrium conformation. The oscillator strengths and radiative lifetimes for some electronic states are calculated based on the MRSDCI wave functions. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Ab initio calculations at the STO-3G level were performed on almost all of the possible isomers for the entire series of closo-carboranes, C2Bn-2Hn, 5 ? n ? 12. Geometry optimizations using the gradient method were also included in all calculations. We report here the relative energies obtained for the various isomers as well as the optimized structures. These calculations confirm our previous predictions of relative stabilities obtained from topological charge stabilization. Comparisons of our structures with those from experimental data provide us with a measure of reliability for bond distances obtained using ab initio SCF MO calculations at the STO-3G level. Results from the geometry optimization substantiated the experimentally known fluxional behavior of the 8 and 11 atom polyhedra.  相似文献   

11.
Ab initio SCF and electron correlation calculations are reported for the singlet ground state of the title compounds. These calculations confirm earlier findings that non-planar bridged Si2H2 is the most stable structure. For protonated disilyne (Si2H3+) a bridged D3h structure is the global mimimum. Two bridged structures of C2v and C2h symmetry are found in the case of disilene (Si2H4) which are only 14–17 kcal/mol above the D2h structure.  相似文献   

12.
Ab initio SCF and CI calculations using a double-zeta plus polarization basis set have been carried out on the trichlorine radical Cl3 to determine its electronic structure. The minimum in energy is determined for a bent structure at a bond angle of 146° and bond lengths of 2.18 Å (SCF ) or 2.22 Å (CI ). At linear geometry a 2Πu state is found to be lowest, approximately 7 kcal above the bent minimum, followed by a 2g+ state, which is around 4 kcal higher. This situation suggests that already for low quantum numbers a complex vibrational pattern in the Cl3 infrared spectrum is to be expected due to spin-orbit coupling as well as coupling of electronic, vibrational, and rotational motion.  相似文献   

13.
Ab initio electronic structures calculations are reported for the four low-lying electronic states X 2B1, 2B2, 2A2, and 2A1 of the CH2NO2 radical. The geometric parameters for the ground-state X 2B1 are predicted by MRSDCI calculations with a double zeta plus polarization basis set. The vertical excitations energies for these electronic states are determined using MRSDCI /DZ +P calculations at the ground-state equilibrium geometry and in agreement with the recent experimental data obtained via PES of the CH2NO anion. The oscillator strenghts and the radiative lifetimes for these electronic states and the spin properties for the ground state are calculated based on the MRSDCI wave functions, predicting results in good agreement with available experimental data. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
The structure and stability of classical and bridged C2H 3 + is reinvestigated. The SCF and CEPA-PNO computations performed with flexibles andp basis sets including twod-sets on carbon confirm our previous results. We find the protonated acetylene structure to be more stable than the vinyl cation by 3.5–4 kcal/mol. The energy barrier for the interconversion of these two structures is at most a few tenths of a kcal/mol. The equilibrium SCF geometries of Weberet al. [15] are affected insignificantly by further optimization at the CEPA-PNO level. Several structures for the interaction of C2H 3 + with HF have been investigated at the SCF level. With our largest basis set which includes a complete set of polarization functions we find a remarkable levelling of the stabilities of most of the structures. In these cases the stabilization energy ΔE ranges from −10 to −13 kcal/mol.  相似文献   

15.
Recently the conception on the cis-trans photoisomerization of stilbene has emerged that this process is governed by a higher excited 1Ag state which exhibits a minimum at the perpendicular conformation crossing the lowest excited 1Bu state upon bond rotation. An evaluation of the potential surfaces governing the photoisomerization process by a PPP SCF CI method revealed that there exists indeed such a photochemically active 1Ag state which in the planar molecule lies about 1 eV above the lowest absorption band and involves the excitations of two electrons from the SCF ground state. Extensions of the calculations to diphenylpolyenes demonstrate that this 1Ag state is related to the forbidden low-lying doubly excited 1Ag state observed earlier in these molecules.  相似文献   

16.
The electronic structures of the ground and excited states of ketene imine (HHCCNH) have been studied by ab initio SCF and CI calculations. The nucleophilic nature of the β carbon with respect to nitrogen has been discussed using calculated electrostatic potentials and by calculated energy differences between the parent and protonated species. The electronically excited 1A″ and 3A″ states are found to be almost degenerate.  相似文献   

17.
SCF CI calculations have been performed to investigate LiXXX association with excited bases R2CO. Although association leads to large increases in n → π1 transition energies, the complexes R2COLiXXX remain bound in the n → π1 state, but are destabilized relative to the ground state. In the LiXXX-urea complex, the n → π1 A2, state lies slightly above a charge-transfer π → σ* A2 state.  相似文献   

18.
《Chemical physics》1987,111(1):87-95
The structures and energies of various LiC2H2 complexes have been investigated by means of ab initio molecular orbital calculations. Analytic SCF gradients were employed with a double-ζ basis set to locate and characterize stationary points on the energy surface. Single-point CI calculations using a double-ζ + diffuse and polarization basis set have been carried out at the DZ + P SCF stationary points. With the highest-level theory, the Li—vinylidene complex and the cis bridged adduct are found to be the most favorable arrangements, the former complex being slightly more stable by about 2 kcal mol−1. These molecules are bound respectively by about 5 and 3 kcal mole−1 relative to infinitely separated lithium plus acetylene. Harmonic vibrational frequencies are also reported and confirm the existence of the cis LiC2H2 species recently observed in a solid argon matrix.  相似文献   

19.
In this paper a series of ab initio SCF and configuration calculations were reported forthe ground state and excited states X~2E, A~2E,~2B_2 and ~2A_1 of allene.For ground state X~2E Jahn-Teller distorsion was discussed and a twisted angle of 50° and a torsional barriers of 0.21—0.51 eVwere derived.Based on calculated results,the experimental photoelectron spectrum of allene has beenassigned.  相似文献   

20.
Calculations have been made at the minima of the X1A1 ground state of the ozone molecule. The equilibrium geometries have been obtained by means of CID calculations. The criterion adopted for the choice of configurations gives realistic results. CIPSI calculations at the two minima lead to an estimated gap of 0.92 eV between them. Our results agree with the analysis of previous theoretical works on the relative stability of open and cyclic zone structures, showing that the D3h minimum is stable relative to the ground state dissociation limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号