首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Acyl- and Alkylidenephosphines. XXIII. Synthesis and Structure of [Bis(trimethylsilylsulfano)methylidene]phosphines Analogous to the phenyl derivative 1a [2] tert-butyl- 1b , mesityl- 1c and methylbis-(trimethylsilyl)phosphine 1 d react with carbon disulfide to give the corresponding [bis(trimethylsilylsulfano)methylidene]phosphines 4 . Only in case of the mesitylphosphine 1 c the intermediate compounds 2 and 3 could be detected by n.m.r. spectroscopic methods; thermally unstable [bis(trimethylsilylsulfano)methylidene]methylphosphine 4 d dimerizes rapidly [1]. [Bis(trimethylsilylsulfano)methylidene]phenylphosphine 4 a crystallizes in the monoclinic centrosymmetric space group P21/c with following dimensions of the unit cell determined at ?95 ± 3°C: a = 1386.4(8); b = 1036.0(7); c = 1281.7(8) pm; ß = 101.23(4)°; Z = 4. An X-ray structure determination (R = 0.032) proves the constitution of this compound as already derived from its nmr spectra. Characteristic bond lengths and angles are: P?C 170; P? C(phenyl) 183; C? S 176; S? Si 219 pm; C? P?C 107; P?C? S 124 and 120; S? C? S 116 and C? S? Si 111°.  相似文献   

2.
Das Gemisch aus dem E- und Z-Isomeren des [2,2-Dimethyl-1-(trimethylsiloxy)propyliden]phosphans ist bei 20°C im diffusen Tageslicht nicht beständig; im Laufe einiger Wochen scheidet sich das Dimere 2,4-Di(tert.butyl)-2,4-bis(trimethylsiloxy)-1,3-diphosphetan 1 ab. Die Verbindung kristallisiert triklin in der Raumgruppe P1 mit a = 1044,5(3); b = 647,8(2); c = 883,8(2) pm; α = 100,39(2); β = 102,84(2); γ = 93,70(2)°; Z = 1. Wie die Röntgenstrukturanalyse (R = 3,7%) zeigt, besitzt das Molekül als kristallographisches Symmetrieelement ein Inversionszentrum. Die mit 190,3 und 189,5 pm langen P? C? Abstände weisen auf eine beträchtliche Ringspannung hin; in Lösung zerfällt das Diphosphetan wieder leicht in das E- und Z-isomere Monomere. Weitere charakteristische Bindungsabstände und -winkel sind: C1? O 140,8; Si? O 163,5 pm sowie P? C1? P' 92,7; C1? P? C1′ 87,3; C1? O? Si 146,2° Acyl and Alkylidene Phosphines. XIII. Molecular and Crystal Structure of 2,4-Di(tert.-butyl)-2,4-bis(trimethylsiloxy)-1,3-diphosphetane Kept at 20°C in diffuse daylight the mixture of the E and Z isomer of [2,2-dimethyl-1-(trimethylsiloxy)propylidene]phosphine is not stable; within several weeks the dimer 2,4-di(tert.-butyl)-2,4-bis(trimethylsiloxy)-1,3-diphosphetane 1 precipitates. The compound crystallizes triclinic in the space group P1 with a = 1044.5(3); b = 647.8(2); c = 883.8(2) pm; α = 100.39(2); β = 102.84(2); γ = 93.70(2)°; Z = 1. As shown by an x-ray structure determination (R = 3.7%) the molecule has a centre of symmetry. The long P? C distances (189.5 and 190.3 pm) indicate a strained ring-system; in solution the diphosphetane decomposes again to form the E and Z isomeric monomer. Further characteristic bond distances and angles are: C1? O 140.8; Si? O 163.5 pm as well as P? C1? P' 92.7; C1? P? C1′ 87.3; C1? O? Si 146.2°.  相似文献   

3.
Acyl and Alkylidenephosphines. XlX. Molecular and Crystal Structure of 2,4-Bis (dimethyl-amino) ?1,3-diphenyl-l, 3-diphosphetane 2,4-Bis(dimethylamino)-1,3-diphenyl-1,3-diphosphetane 2a which is isolated as a byproduct in the synthesis of (E)-(dimethylamino)methylidene-phenylphosphine 1a crystallizes in the monoclinic space group P21/c. The dimensions of the unit cell determined at ?65 ± 5°C are: a = 1 004(1); b = 1 018(3); c = 1 873(2) pm; β = 105.15(8)°; Z = 4. As it is shown by a low temperature X-ray structure determination (Rg = 3.5%) the phenyl groups are placed above and the dimethylamino groups below the folded 1,3-diphosphetane ring; the molecule with its differently twisted substituents, however, deviates considerably from point symmetry mm2. The dihedral angle between the P1? C1n? P2 planes (n = 1 or 2) is found to be 153°. The relatively long Pn? C1n bond distances (187 to 191 pm) indicate a strained ring system; in solution 2a decomposes to some extent and forms monomeric 1a again. Further characteristic average bond distances and angles are: Pn? C4n (phenyl) 184; C? N 146 pm; P1? C1n? P2 93°; C11? Pn? C12 84° and Pn? C1n? Nn 116°.  相似文献   

4.
Acyl- and Alkylidenephosphines. XXVIII. Synthesis and Structure of 1,3-Dibenzyl- and 1,3-Diethyl-2,4-bis(phenylimino)-1,3-diphosphetane Catalyzed by small amounts of solid sodium hydroxide, the adducts 1a and 1b formed from benzyl- or ethylbis(trimethylsilyl)phosphine and phenylisocyanate, react at +20°C slowly to give hexamethldisiloxane and oligomeric [(phenylimino)methylidene]phosphines. In different solvents the benzyl compound was found to exist only as a mixture of [N,N′-(E)/(Z)]-isomeric 2,4-bis-(phenylimino)-1,3-diphosphetanes 2a with their alkyl groups at the phosphorus atoms in trans position, whereas in case of the ethyl derivative 2b a second pair of [N,N′-(E)/(Z)]-isomeric dimers with their substituents in cis position and two trimeric forms ( 3b and 4b ) could be detected in cyclopentane. [N,N′-(E)]-1r,3t-dibenzyl- ( 2a ) and [N,N′-(E)]-1r,3t-diethyl-2,4-bis(phenylimino)-1,3-diphosphetane 2b isolated from 1,2-dimethoxyethane or cyclopentane, crystallize in the monoclinic space group P21/c or P21/n, resp., with following dimensions of the unit cell determined at temperatures of measurement of +20 ± 3°C/?130 ± 3°C: a = 2145.4(1)/569.3(1); b = 568.1(2)/719.1(2); c = 1960.2(2)/2042.6(4) pm; β 99.43(1)°/95.03(2)°; Z = (2+2) and 2, resp. X-ray structure determinations (Rw = 0.034/0.041) show both molecules to be centrosymmetric. Characteristic rounded bond lengths (pm) and angles (°) are: endocyclic P? C 185/184; C? P? C 82/81; P? C? P 98/99; exocyclic P? C 186/184; C?N l27/127; C?N? C 121/11.  相似文献   

5.
Acyl- and Alkylidenephosphines. XXVII. Molecular and Crystal Structure of Methyl-[(N-phenyl, N-trimethylsilyl)thiocarbamoyl]trimethylsilylphosphine . Methyl[(N-phenyl, N-trimethylsilyl)thiocarbamoyl]trimethylsilylphosphine 1a formed via an addition of methylbis(trimethylsilyl)phosphine to phenyl isothiocyanate [1], crystallizes in the monoclinic centrosymmetric space group P21/n with following dimensions of the unit cell determined at a temperature of measurement of ?80±3°C: a=1041.2(4);b=1706.9(12);c=1001.1(6)pm; β=106.41(4)°; Z = 4. An X-ray structure determination (Rw = 0.039) confirms the constitution of the compound as already derived from its nmr spectra. One trimethylsilyl group is bound to the phosphorus atom, whereas the other is connected with the sp2-hybridized nitrogen atom. Characteristic rounded bond lenghts and angles are: P? Si 231, P? CH3 184, P? C(S) 187, C?S 167, N? C(S) 137, and N? Si 181 pm as well as P? C? S 122°, P? C? N 117°, and S? C? N 121°.  相似文献   

6.
Contributions to the Chemistry of Silicon-Sulphur Compounds. 53. Structure of 1,3-Dimethyl-1,1,3,3-tetraphenyldisilthiane 1,3-Dimethyl-1,1,3,3-tetraphenyldisilthiane was obtained by an insertion reaction of sulphur with Ph2 MeSiH. The compound crystallizes triclinically (P1 ; a = 1166.7; b = 1231.1; c = 988.6 pm; α = 113.23; β = 90.34; γ = 112.43°; Z = 2). The X-ray structure analysis shows a bent configuration of the molecule with Si? S? Si = 108.7°. The results are discussed together with the structures of hexaphenyldisilthiane and dimethyltetraphenyldisiloxane.  相似文献   

7.
Acyl- and Alkylidenephosphines. XXXII. Di-cyclohexoyl- and Diadamant-1-oylphosphine – Keto-Enol Tautomerism and Structure Lithium dihydrogenphosphide · DME (1) [12] and cyclo-hexoyl or adamant-1-oyl chloride react in a molar ratio of 3:2 to give lithium di-cyclo-hexoylphosphide · DME and the corresponding diadamant-1-oylphosphide.2THF (1) resp. Treatment of these two compounds with 85% tetrafluoroboric acid. diethylether adduct yields di-cyclo-hexoyl- ( 1b ) and diadamant-1-oylphosphine ( 1c ). In nmr spectroscopic studies 1b over a range of 203 to 343 K, a strong temperature dependence of the keto-enol equilibrium is found; thermodynamic data characteristic for the formation of the enol tautomer (ΔH0 = ?4.3 kJ. mol?1; ΔS0 = ?9.2 J. mol?1. K (?1) are compared of 1,3-diketones. The enol tautomer of diadamant-1-oylphosphine ( E-1c ) as obtained from a benzene solution in thin colourless plates, crystallizes in the monoclinic space group P21/c {a = 722.2(2); b = 1085.5(4); c = 2434.8(5) pm; ß = 96.43(2)° at –100 ± 3°C; Z = 4}. An X- ray structure analysis (Rw = 0.033) shows bond lengths and angles to be almost identical within the enolic system (P? C 179/180; C? O 130/129; C? C(adamant-1-yl) 152/153 pm; C? P? C 99°; P? C? O 124°/124°; P? C? C 120°/120°; C? C? O 116°/116°. The geometry of the very strong, but probably asymmetric O‥H‥O bridge is discussed (O? H 120/130, O‥O 245 pm).  相似文献   

8.
Metal Derivatives of Molecular Compounds. III. Molecular and Crystal Structure of Lithium bis(trimethylsilyl)phosphide · DME and of Lithium dihydrogenphosphide · DME Lithium bis(trimethylsilyl)phosphide · DME 1 prepared from tris(trimethylsilyl)-phosphine and lithium methanide [2, 4] in 1,2-dimethoxyethane
  • 1 1,2-Dimethoxyethan (DME); Tetrahydrofuran (THF); Bis[2-(dimethylamino)ethyl]methyl-amin (PMDETA).
  • , crystallizes in the orthorhombic space group Pnnn {a = 881.1(9); b = 1308.5(9); c = 1563.4(9) pm at ?120 ± 3°C; Z = 4 formula units}, lithium dihydrogenphosphide · DME 2 [10] prepared from phosphine and lithium- n -butanide in the same solvent, in P2 1 2 1 2 1 {a = 671.8(1); b = 878.6(1); c = 1332.2(2) pm at ?120 ± 3°C; Z = 4 formula units}. X-ray structure determinations (R w = 0.036/0.045) show the bis(trimethylsilyl) derivative 1 to be dimeric with a planar P? Li? P? Li ring (P? Li 256 pm; Li? P? Li 76°; P? Li? P 104°), and the dihydrogenphosphide 2 to be polymeric with a linear Li? P? Li fragment (P? Li 254 to 260 pm; Li? P? Li 177°; P? Li? P 118°). The shortened P? Si distance (221 pm) of compound 1 and the structure of the PH 2 group in 2 are discussed in detail. Lithium obtains its preferred coordination number 4 by a chelation with one molecule of 1,2-dimethoxyethane (Li? O 202 to 204 pm).  相似文献   

    9.
    Trimethylsilyl Derivatives of Vb-Elements. II. Molecular and Crystal Structure of Tetrakis(trimethylsilyl)diarsine Pale yellow tetrakis(trimethylsilyl)diarsine 1 which is easily obtained from lithium bis(trimethylsilyl)arsenide · 2 tetrahydrofurane (THF) and 1,2-dibromoethane crystallizes in a trigonal, acentric space group. The dimensions of the unit cell determined at ?95 ± 5°C are: a = 974.2(2); c = 2 080.0(4) pm; Z = 3. Considering anomalous dispersion the refinement of structural data in space group P3121 converges at an R-value of 0.060, in its enantiomorph P3221, however, at 0.031. With a dihedral angle Si2′? As′? As? Si1 of ?125.7° the molecule adopts gauche conformation. Both bis(trimethylsilyl)arsino groups are symmetry-related by the crystallographic operation of the diad. Characteristic bond lengths and angles are: As? As 245.8(1); As? Si 236.5(1) and 236.2(2) pm; Si? As? Si 100.90(5); As? As? Si 93.87(3) and 113.63(4)°. The shortest intermolecular As? As distance is found to be 662 pm.  相似文献   

    10.
    Structural Chemistry of Phosphorus-containing Chains and Rings. 1. Crystal Structure of the Diphosphasilirane (t-BuP)2SiPh2 The three-membered P2Si-heterocycle 1, 2-di-tert-butyl-3, 3-diphenyl-1, 2, 3-diphosphasilirane (t-BuP)2SiPh2 crystallizes monoclinic in the space group P21 with a = 1041.2 pm, b = 882.3 pm, c = 1158.1 pm, β = 91.33° and Z = 2 formula units. A special structural feature is the regular triangle built up by two P and one Si. Therefore the endocyclic bond angle at Si is as low as 60°. The average bond lengths are P? P = 222.6 pm, P? Si = 222.5 pm, P? C = 190.8 pm, Si? C = 186.6 pm, (C? C )ph = 139.0 pm, ( C? C )t-Bu = 151.7 pm. The geometry of the substituents phenyl and tert-butyl is quite normal, the last ones are slightly disordered.  相似文献   

    11.
    2,2,4,4-Tetramethyl-2,4-disila-cyclo-butylzinc Chloride · TMEDA and Related Compounds The reaction of (tmeda)lithium 2,2,4,4-tetramethyl-2,4-disila-cyclo-butanide with anhydrous zinc(II) chloride in pentane in the molar ratio of 2:1 does not yield the expected dialkylzinc derivative but the monosubstitution product 2,2,4,4-Tetramethyl-2,4-disila-cyclo-butylzinc chloride · tmeda 1 . This derivative crystallizes in the orthorhombic space group Pnma with a = 1 235.0(1); b = 1 696.8(2); c = 1 148.0(1) pm and Z = 4. The Zn? C bond lengths lie with 198,4 pm in the characteristic region for compounds containing a tetrahedrally coordinated zinc atom. The thermolysis of 1 leads under elimination of ZnCl2 to the formation of Bis(2,2,4,4-tetramethyl-2,4-disila-cyclo-butyl)zinc · tmeda 2 . (tmeda)LiCH(SiMe3)2 reacts analogously with one equivalent of ZnCl2 to Bis(trimethylsilyl)methylzinc chloride · tmeda 3 . Lithium methanide or Lithium butanide add to a Si-C bond of 1,1,3,3-tetramethyl-1,3-disila-cyclo-butane, and these acyclic lithium alkanides 4 ( a : R = Me, b : R = n-Bu) yield with zinc(II) chloride the destillable dialkyl zinc compounds Bis(2,2,4,4-tetramethyl-2,4-disilapentyl)- 5 a and Bis(2,2,4,4-tetramethyl-2,4-disila-octyl)zinc 5 b .  相似文献   

    12.
    Molecular and Crystal Structure of 1,4-Bis[tris(tetrahydrofuran)lithium]-octaphenyltetrasilane 1,4-Dilithium-octaphenyltetrasilane prepared from octaphenyl-cyclo-tetrasilane and lithium in tetrahydrofuran (THF) [4], can be isolated from tetrahydrofuran/n-pentane as an adduct with six molecules of tetrahydrofuran per formula unit. The orange-red compound crystallizes in the triclinic space group P1 {a = 1159.6(3); b = 1268.4(2); c = 1367.8(3) pm; α = 92,23(2)° β = 113.79(2)° γ = 111.62(2)° at ?5 ± 3°C; Z = 1}. An x-ray structure determination (Rw = 0.046) shows the existence of a centrosymmetric molecule with an extended planar Li? Si4? Li unit; either lithium atom is bound to silicon and to the oxygen atoms of three molecules of tetrahydrofuran. Characteristic bond lengths and angles are: Li? Si 271; Si? Si 241 and 243; Si? C 190 to 192 pm; Li? Si? Si 126°; Si? Si? Si 127°. 29Si and 7Li n.m.r. measurements at low temperatures indicate the presence of three different adducts.  相似文献   

    13.
    Formation of Organosilicon Compounds. 92. Formation and Structure of Octamethylhexasila-hexascaphane By rearrangement and abstraction of CH4 at the presence of AlBr3 2 forms 3 , and 6 forms 7 , which is also obtained reacting 8 and 9 under the same condition. Lithination of 1, 1, 3, 5, 5, 7, 7, 9, 9-Nonamethyl-1, 3, 5, 7, 9-pentasiladecaline yields 12 , which is trapped with me3SiCl to form 6 . Convertation of 13 to 14 leads to 8 by reaction with ClSi(CH2—Sime3)3. Compound 7 is characterized by NMR and mass spectroscopy as well as X-ray structural analysis. 1, 3, 5, 7, 9, 9, 11, 11-Octamethyl-1, 3, 5, 7, 9, 11-hexasila-hexascaphane 7 crystallizes in the monoclinic space group P21/n (No. 14) with a = 3296.7 pm, b = 1536.2 pm, c = 891.9 pm, β 91.71° and Z = 8 formular units. Both crystallographic independent molecules have approximately the symmetry C2. The differences of corresponding bond lengths, bond angles and torsion angles are unimportant. But there is a distinct dependence of the Si? C bond length relative to the function of the bond in the molecule (Averages: Si? C) (endo) = 188.4 pm, Si? C (exo) = 187.6 (pm).  相似文献   

    14.
    Synthesis and Structure of Lithium Tris(trimethylsilyl)silanide · 1,5 DME Lithium tris(trimethylsilyl)silanide · 1,5 DME 2a synthesized from tetrakis(trimethylsilyl)silane 1 [6] and methyllithium in 1,2-dimethoxyethane , crystallizes in the monoclinic space group P21/c with following dimensions of the unit cell determined at a temperature of measurement of ?120 ± 2°C: a = 1 072.9(3); b = 1 408.3(4); c = 1 775.1(5) pm; β = 107.74(2)°; 4 formula units (Z = 2). An X-ray structure determination (Rw = 0.040) shows the compound to be built up from two [lithium tris(trimethylsilyl)silanide] moieties which are connected via a bridging DME molecule. Two remaining sites of each four-coordinate lithium atom are occupied by a chelating DME ligand. The Li? Si distance of 263 pm is considerably longer than the sum of covalent radii; further characteristic mean bond lengths and angles are: Si? Si 234, Li? O 200, O? C 144, O?O (biß) 264 pm; Si? Si? Si 104°, Li? Si? Si 107° to 126°; O? Li? O (inside the chelate ring) 83°. Unfortunately, di(tert-butyl)bis(trimethylsilyl)silane 17 prepared from di(tert-butyl)dichlorsilane 15 , chlorotrimethylsilane and lithium, does not react with alkyllithium compounds to give the analogous silanide.  相似文献   

    15.
    Cyclic Diazastannylenes. XIX. Reaction of a Bis(amino)germylene, -stannylene, and -plumbylene with Phosphorus Trichloride and 2, 3-Dimethyl-1, 3-butadiene The cyclic bis(amino)germylene 1 reacts with PCl3 by a threefold insertion into the P? Cl bonds and forms [Me2Si(NtBu)2Ge(Cl)]3P( 4 ). 4 crystallizes in the triclinic space group P1 with cell dimensions: a = 1955.2(9), b = 1378.3(6), c = 1074.3(5) pm, α = 90.4(1), β = 121.6(1), γ = 97.9(1)° and Z = 2. X-ray structure analysis was used to show, that the molecule 4 has approximately C3h point symmetry. All germanium, chlorine, and silicon atoms are quite accurately situated in a plane, perpendicular to which the GeN2Si-rings are erected. The only heavy atom which disturbs the mirror symmetry is the phosphorus, which is on the top of a flat pyramide (Ge? P? Ge = 115.0°). Important bond lengths (mean values) are: Ge? P = 231.0(4), Ge? N = 182.4(7), Ge? Cl = 217.9(2) and Si? N = 173.6(7) pm. The unusual nearly planar coordination of the phosphorus atom can be explained by the particular steric requirements of the substituents. PCl3 oxidizes the tin atom in the bis(amino)stannylene 2 by the formation of Me2Si(NtBu)2SnCl2 ( 5 ); as additional product originates an amorphous solid of analytical composition (PCl)n. In contrast to 1 and 2 the lead atom  相似文献   

    16.
    Formation of Organosilicon Compounds. 103. Formation and Structure of cis and trans 2,4-Dichloro-2,4-bis(trimethylsilyl)-1,1,3,3-tetramethyl-1,3-disilacyclobutane The reaction of Me3Si? CCl2? SiMe2Cl with LiBu in THF yields 1,1,3,3-Tetramethyl-2,4-bis(trimethylsilyl) 1,3-disilabicyclo[1.1.0]butane. The product of the first reaction stage is Me3Si? CCl(Li)-SiMe2Cl. The 1,3-Disilacyclobutane 2 and 3 were isolated, when Me3Si? CCl2? SiMe2Cl was treated with LiBu in Et2O. This way the proof is given that 2 and 3 are intermediates of the formation of product 1 . The further products are 4 and 5 (CCl in 2 and 3 substituted by CH) and Me3Si? CH2? C(SiMeCl)2SiMe3. 2 crystallizes orthorhombically in the space group Fdd 2 (no. 43) with a = 2149.1 pm, b = 2229.2 pm, c = 1763.6 pm and Z = 16 molecules per cell. The central ring of disilacyclobutane is slightly folded (17.9°). The configuration of the C-Atoms in this four membered ring gets closer to a sp2 configuration built up by three Si? C bonds. The Cl-atoms approximately have orthogonal positions to these CSi3 arrangements. The extension of the C? Cl bonds (184.6 pm) and the mutual approximations of the Cl-atoms in the cis-position indicate a high reactivity of the molecule.  相似文献   

    17.
    Phosphorane Iminato Complexes of Sulfur. Syntheses and Crystal Structures of [O3SS(NPPh3)2] · CH3CN, [SO(NPPh3)2], and [SCl(NPMe3)2]Cl The title compounds have been prepared by the reaction of Me3SiNPPh3 with SO2 and SOCl2, respectively, and by the reaction of Me3SiNPMe3 with S2Cl2. They form colourless, moisture sensitive crystals, which were characterized by IR spectroscopy and by crystal structure determinations. [O3SS((NPPh3)2)] · CH3CN : Space group Pca21, Z = 4, structure solution with 4016 observed unique reflections, R = 0.050. Lattice dimensions at ?60°C: a = 1865.1, b = 1168.4, c = 1569.0 pm. The compound has a zwitterionic structure with a S? S bond length of 218.2 pm and bond lengths S? N of 161.2 and P? N of 160.1 pm. [SO(NPPh3)2] : Space group P21/c, Z = 4, structure solution with 2854 observed unique reflections, R = 0.113. Lattice dimensions at ?50°C: a = 1173.1, b = 1585.6, c = 1619.2 pm, b? = 98.13°. The compound forms monomeric molecules, in which the positions of S and N atoms are disordered in two positions. The bond lengths are S? N 166 pm and P? N 163 pm in average. [SCl(NPMe3)2]Cl : Space group P1 , Z = 2, structure solution with 2416 observed unique reflections, R = 0.038. Lattice dimensions at 20°C: a = 613.2, b = 1030.3, c = 1111.4 pm, α = 88.48°, b? = 88.01°, γ = 83.10°. The compound forms ions [SCl(NPMe3)2]+ and Cl?. In the cation the sulfur atom is ?-tetrahedrally coordinated with a long S? Cl distance of 246.9 pm and bond lengths S? N of 155.3 pm and P? N of 164.3 pm in average.  相似文献   

    18.
    Synthesis and Crystal Structures of the Silylated λ5-Phosphazenes R? C(CH2PPh2NSiMe3)3 with R = H and CH3 The title compounds are obtained by Staudinger reaction from the corresponding tripodal phosphanes R? C(CH2PPh2)3 and trimethylsilylazide. Both complexes are characterized by their IR and NMR spectra and by crystal structure analyses. H? C(CH2PPh2NSiMe3)3 ( 1 ): Space group P21/c, Z = 4, structure determination with 7833 independent reflections, R = 0.055. Lattice dimensions at ?50°C: a = 1399.5, b = 2311.4, c = 1678.9 pm, β = 112.92°. CH3? C(CH2PPh2NSiMe3)3 ( 2 ): Space group P1 , Z = 2, structure determination with 9251 independent reflections, R = 0.057. Lattice dimensions at ?50°C: a = 1276.5, b = 1386.9, c = 1790.2 pm; α = 85.55°, β = 69.39°, γ = 62.99°. 1 and 2 form monomeric molecules which are distinguished by their conformation.  相似文献   

    19.
    Structural Chemistry of Phosphorus Containing Chains and Rings. 11. Crystal and Molecular Structures of the Two Stereoisomers of Tetraphospha-silaspiro[2.2]pentane (PBut)2Si(PBut)2 The spirocyclic compound 1,2,4,5-tetra-tert-butyl-1,2,4,5-tetraphospha-3-silaspiro[2.2]pentane exists in tow diastereomers of point symmetry 4 and 2. The isomer with symmetry 4 even in the solid crystallizes tetragonally in I41/a with a = 1247.0, c = 1505.5 pm and Z = 4. The isomer of fairly exact symmetry 2 crystallizes triclinically in P1 with a = 612.8, b = 996.3, c = 1017.2 pm, α = 75.63, β = 72.38, γ = 88.71° and Z = 1. In this disordered structure the surroundings of Si is slightly distorted due to the influence of the substituents. The (average) bond lengths are (4 , 2): d(Si? P) = 220.09(9), 221.5(5); d(P? P) = 225.5(2), 224.2(5); d(P? C) = 189.4(3), 190(2); d(C? C) = 151.4(4), 152(3) pm. The geometry of the substituents in both isomers is quite normal.  相似文献   

    20.
    Synthesis of Phenylnitrene Complexes with N-Trimethylsilylaniline. II. Characterization and Crystal Structure of the Rhenium(V) Complexes mer-[Re(NPh)Cl3(NH2Ph)(Ph3P)] and trans-[Re(NPh)(OMe)Cl2(Ph3P)2] Reaction of [ReOCl3(Ph3P)2] with N-trimethylsilylaniline yields mer-[Re(NPh)Cl3(Ph3P)2], which reacts under air with excess of N-trimethylsilylaniline to form [Re(NPh)Cl3 · (NH2Ph)(Ph3P)]. Crystallization from CH2Cl2/MeOH affords [Re(NPh)(OMe)Cl2(Ph3P)2] as an additional product. [Re(NPh)Cl3(NH2Ph)(Ph3P)] crystallizes in the monoclinic space group P21/n with a = 1 192.3(3); b = 1 918.9(3); c = 1 266.3(3) pm; β = 101.71(1)°; Z = 4. The rhenium atom has a distorted octahedral environment with the Cl atoms in meridional positions. The phenyl nitrene ligand is coordinated with an almost linear arrangement Re? N1? C40 = 166.8(6)° and with a bond distance Re?N = 170.5(6) pm. [Re(NPh)(OMe)Cl2(Ph3P)2] · 1/2CH2Cl2 crystallizes in the triclinic space group P1 : a = 1 103.1(4); b = 1 227.9(4); c = 1 711.3(5) pm; α = 70.48(3)°; β = 72.71(3)°; γ = 80.03(3)°; Z = 2. The rhenium atom exhibits a distorted octahedral coordination with the Cl atoms and the phosphine ligands in trans positions. As a consequence of the competition of the nitrene ligand and the trans-coordinated methoxy group the Re?;N bond length is slightly lengthened to 173.2(7) pm, while the Re? O bond length of 193.4(6) pm is short. The bond angles Re? N? C70 and Re? O? C80 are 173.3(7)° and 139.1(7)°, respectively.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号