首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rate constants for the reactions of O3 and OH radicals with furan and thiophene have been determined at 298 ± 2 K. The rate constants obtained for the O3 reactions were (2.42 ± 0.28) × 10?18 cm3/molec·s for furan and <6 ×10?20 cm3/molec·s for thiophene. The rate constants for the OH radical reactions, relative to a rate constant for the reaction of OH radicals with n-hexane of (5.70 ± 0.09) × 10?12 cm3/molec·s, were determined to be (4.01 ± 0.30) × 10?11 cm3/molec·s for furan and (9.58 ± 0.38) × 10?12 cm3/molec·s for thiophene. There are to date no reported rate constant data for the reactions of OH radicals with furan and thiophene or for the reaction of O3 with furan. The data are compared and discussed with respect to those for other alkenes, dialkenes, and heteroatom containing organics.  相似文献   

2.
Relative rate constants for the reaction of OH radicals with a series of n-alkanes have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with n-butane of 2.58 × 10?12 cm3 molecule?1s?1, the rate constants obtained are (X1012 cm3 molecule?1 s?1): propane 1.22 ± 0.05, n-pentane 4.13 ± 0.08, n-heptane 7.30 ± 0.17, n-octane 9.01 ± 0.19, n-nonane 10.7 ± 0.4, and n-decane 11.4 ± 0.6. The data for propane, n-pentane, and n-octane are in good agreement with literature values, while those for n-heptane, n-nonane, and n-decane are reported for the first time. These data show that the rate constant per secondary C—H bond is ∽40% higher for —CH2— groups bonded to two other —CH2— groups than for those bonded to a —CH2— group and a —CH3 group.  相似文献   

3.
Using a relative rate technique, rate constants for the gas phase reactions of the OH radical with n-butane, n-hexane, and a series of alkenes and dialkenes, relative to that for propene, have been determined in one atmosphere of air at 295 ± 1 K. The rate constant ratios obtained were (propene = 1.00): ethene, 0.323 ± 0.014; 1-butene, 1.19 ± 0.06; 1-pentene, 1.19 ± 0.05; 1-hexene, 1.40 ± 0.04; 1-heptene, 1.51 ± 0.06; 3-methyl-1-butene, 1.21 ± 0.04; isobutene, 1.95 ± 0.09; cis-2-butene, 2.13 ± 0.05; trans-2-butene, 2.43 ± 0.05; 2-methyl-2-butene, 3.30 ± 0.13; 2,3-dimethyl-2-butene, 4.17 ± 0.18; propadiene, 0.367 ± 0.036; 1,3-butadiene, 2.53 ± 0.08; 2-methyl-1,3-butadiene, 3.81 ± 0.15; n-butane, 0.101 ± 0.012; and n-hexane, 0.198 ± 0.017. From a least-squares fit of these relative rate data to the most reliable literature absolute flash photolysis rate constants, these relative rate constants can be placed on an absolute basis using a rate constant for the reaction of OH radicals with propene of 2.63 × 10?11 cm3 molecule?1 s?1. The resulting rate constant data, together with previous relative rate data from these and other laboratories, lead to a self-consistent data set for the reactions of OH radicals with a large number of organics at room temperature.  相似文献   

4.
Azulene, which is isomeric with naphthalene, was studied to determine whether it behaves like a polycyclic aromatic hydrocarbon or an alkene in its gas-phase reactions with OH and NO3 radicals and O3. Using relative rate methods, rate constants for the reactions of azulene with OH and NO3 radicals and O3 of (2.73 ± 0.56) × 10?10 cm3 molecule?1 s?1, (3.9) × 10?10 cm3 molecule?1 s?1, and <7 × 10?17 cm3 molecule?1 s?1, respectively, were obtained at 298 ± 2 K. The observation that the NO3 radical reaction did not involve NO2 in the rate determining step indicates that azulene behaves more like an alkene than a polycyclic aromatic hydrocarbon in this reaction. No conclusive evidence for the formation of nitroazulene(s) from either the OH or NO3 radical-initiated reaction of azulene (in the presence of NOx) was obtained.  相似文献   

5.
Rate constants for the gas-phase reactions of the biogenically emitted monoterpene β-phellandrene with OH and NO3 radicals and O3 have been measured at 297 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained were (in cm3 molecule?1 s?1 units): for reaction with the OH radical, (1.68 ± 0.41) × 10?10; for reaction with the NO3 radical, (7.96 ± 2.82) × 10?12; and for reaction with O3, (4.77 ± 1.23) × 10?17, where the error limits include the estimated uncertainties in the reference reaction rate constants. Using these rate constants, the lifetime of β-phellandrene in the lower troposphere due to reaction with these species is calculated to be in the range of ca. 1–8 h, with the OH radical reaction being expected to dominate over the O3 reaction as a loss process for β-phellandrene during daylight hours.  相似文献   

6.
Relative rate constants for the gas-phase reactions of OH radicals with a series of alkyl nitrates have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10?12 cm3/molec·s, the rate constants obtained are (× 1012 cm3/molec·s): 2-propyl nitrate, 0.18 ± 0.05; 1-butyl nitrate, 1.42 ± 0.11; 2-butyl nitrate, 0.69 ± 0.10; 2-pentyl nitrate, 1.87 ± 0.12; 3-pentyl nitrate, 1.13 ± 0.20; 2-hexyl nitrate, 3.19 ± 0.16; 3-hexyl nitrate, 2.72 ± 0.22; 3-heptyl nitrate, 3.72 ± 0.43; and 3-octyl nitrate, 3.91 ± 0.80. These rate constants, which are the first reported for the alkyl nitrates, are significantly lower than those for the parent alkanes, and a formula, based on the numbers of the various types of C? H bonds in the alkyl nitrates, is derived for rate constant estimation purposes.  相似文献   

7.
Rate constants have been determined at 296 ± 2 K for the gas phase reaction of NO3 radicals with a series of aromatics using a relative rate technique. The rate constants obtained (in cm3 molecule?1 s?1 units) were: benzene, <2.3 × 10?17; toluene, (1.8 ± 1.0) × 10?17; o? xylene, (1.1 ± 0.5) × 10?16; m? xylene, (7.1 ± 3.4) × 10?17; p? xylene, (1.4 ± 0.6) × 10?16; 1,2,3-trimethylbenzene, (5,6 ± 2.6) × 10?16; 1,2,4-trimethylbenzene (5.4 - 2.5) × 10?16; 1,3,5-trimethylbenzene, (2.4 ± 1.1) × 10?16; phenol, (2.1 ± 0.5) × 10?12; methoxybenzene, (5.0 ± 2.8) × 10?17; o-cresol, (1.20 ± 0.34) × 10?11; m-cresol, (9.2 ± 2.4) × 10?12; p-cresol, (1.27 ± 0.36) × 10?11; and benzaldehyde, (1.13 ± 0.25) × 10?15. These kinetic data, together with, in the case of phenol, product data, suggest that these reactions proceed via H-atom abstraction from the substituent groups. The magnitude of the rate constants for the hydroxy-substituted aromatics indicates that the nighttime reaction of NO3 radicals with these aromatics can be an important loss process for both NO3 radicals and these organics, as well as being a possible source of nitric acid, a key component of acid deposition.  相似文献   

8.
The kinetics of the gas-phase reactions of naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene with O3 and with OH radicals have been studied at 295 ± 1 K in one atmosphere of air. Upper limit rate constants for the O3 reactions of <3 × 10?19, <4 × 10?19, and <4 × 10?19 cm3 molecule?1 s?1 were obtained for naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene, respectively. For the OH radical reactions, rate constants of (in units of 10?11 cm3 molecule?1 s?1) 2.59 ± 0.24, 5.23 ± 0.42, and 7.68 ± 0.48 were determined for naphthalene, 2±methylnaphthalene, and 2,3-dimethylnaphthalene, respectively. These data show that under atmospheric conditions these naphthalenes will react mainly with the OH radical, with life-times due to this reaction ranging from ca. 11 h for naphthalene to ca. 4 h for 2,3-dimethylnaphthalene.  相似文献   

9.
Relative rate constants for the reaction of OH radicals with a series of α,β-unsaturated carbonyls have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with propene of 2.52 × 10?11 cm3/molec·s, the rate constants obtained are (× 1011 cm3/molec·s: acrolein, 1.83 ± 0.13; crotonaldehyde, 3.50 ± 0.40; methacrolein, 2.85 ± 0.23; and methylvinylketone, 1.88 ± 0.14). These data, which are necessary input to chemical computer models of the NOx–air photooxidations of conjugated dialkenes, are discussed and compared with literature values.  相似文献   

10.
Using a relative rate technique, rate constants for the gas-phase reactions of the OH radical with a series of monoterpenes have been determined in one atmosphere of air at 294 ± 1 K. Relative to a rate constant for the reaction of OH radicals with 2,3-dimethyl-2-butene of 1.12 × 10?10 cm3 molecule?1 sec?1, the rate constants obtained were (in units of 10?11 cm3 molecule?1 sec?1): α-Pinene, 5.45 ± 0.32; β-pinene, 7.95 ± 0.52; Δ3-carene, 8.70 ± 0.43; d-limonene, 16.9 ± 0.5; α-terpinene, 36.0 ± 4.0; γ-terpinene, 17.6 ± 1.8; α-phellandrene, 31.0 ± 7.1; myrcene, 21.3 ± 1.6; and ocimene (acis-, trans-mixture), 25.0 ± 1.9. These are the first quantitative kinetic data reported for many of these monoterpenes. The rate constants obtained are compared with the available literature data and with a priori estimates based on the number and configuration of substituents around the double bond(s). The tropospheric lifetimes of these monoterpenes with OH radicals, NO3 radicals and O3 are estimated and compared. Atmospheric lifetimes with respect to reaction with the OH radical are calculated to range from ~0.75 hr for α-terpinene to ~5 hr for α-pinene.  相似文献   

11.
The kinetics of the atmospherically important gas-phase reactions of acenaphthene and acenaphthylene with OH and NO3 radicals, O3 and N2O5 have been investigated at 296 ± 2 K. In addition, rate constants have been determined for the reactions of OH and NO3 radicals with tetralin and styrene, and for the reactions of NO3 radicals and/or N2O5 with naphthalene, 1- and 2-methylnaphthalene, 2,3-dimethylnaphthalene, toluene, toluene-α,α,α-d3 and toluene-d8. The rate constants obtained (in cm3 molecule?1 s?1 units) at 296 ± 2 K were: for the reactions of O3; acenaphthene, <5 × 10?19 and acenaphthylene, ca. 5.5 × 10?16; for the OH radical reactions (determined using a relative rate method); acenaphthene, (1.03 ± 0.13) × 10?10; acenaphthylene, (1.10 ± 0.11) × 10?10; tetralin, (3.43 ± 0.06) × 10?11 and styrene, (5.87 ± 0.15) × 10?11; for the reactions of NO3 (also determined using a relative rate method); acenaphthene, (4.6 ± 2.6) × 10?13; acenaphthylene, (5.4 ± 0.8) × 10?12; tetralin, (8.6 ± 1.3) × 10?15; styrene, (1.51 ± 0.20) × 10?13; toluene, (7.8 ± 1.5) × 10?17; toluene-α,α,α-d3, (3.8 ± 0.9) × 10?17 and toluene-d8, (3.4 ± 1.9) × 10?17. The aromatic compounds which were observed to react with N2O5 and the rate constants derived were (in cm3 molecule?1 s?1 units): acenaphthene, 5.5 × 10?17; naphthalene, 1.1 × 10?17; 1-methylnaphthalene, 2.3 × 10?17; 2-methylnaphthalene, 3.6 × 10?17 and 2,3-dimethylnaphthalene, 5.3 × 10?17. These data for naphthylene and the alkylnaphthalenes are in good agreement with our previous absolute and relative N2O5 reaction rate constants, and show that the NO3 radical reactions with aromatic compounds proceed by overall H-atom abstraction from substituent-XH bonds (where X = C or O), or by NO3 radical addition to unsaturated substituent groups while the N2O5 reactions only occur for aromatic compounds containing two or more fused six-membered aromatic rings.  相似文献   

12.
Rate constants for the gas-phase reactions of O3 with the sesquiterpenes α-cedrene, α-copaene, β-caryophyllene, α-humulene, and longifolene, and with the monoterpenes limonene, terpinolene, α-phellandrene, and α-terpinene, have been measured using a relative rate technique at 296 ± 2 K and atmospheric pressure of air. The rate constants obtained (in units of 10?17 cm3 molecule?1 s?1) are: limonene, 20.1 ± 5.1; terpinolene, 188 ± 67; α-phellandrene, 298 ± 105; α-terpinene, 2110 ± 770; α-cedrene, 2.78 ± 0.71; α-copaene, 15.8 ± 5.6; β-caryophyllene, 1160 ± 430; α-humulene, 1170 ± 450; and longifolene, <0.07, where the indicated errors include the estimated overall uncertainties in the rate constants for the reference organics. Hydroxyl radical formation yields were also determined for the O3 reactions with the sesquiterpenes, of 0.67 for α-cedrene, 0.35 for α-copaene, 0.06 for β-caryophyllene, and 0.22 for α-humulene, all with estimated overall uncertainties of a factor of ca. 1.5. The tropospheric lifetimes of the sesquiterpenes due to reaction with O3 are calculated. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Relative rate constants for the reaction of OH radicals with a series of branched alkanes have been determined at 297 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with n-butane of 2.58 × 10?12 cm3/molecule · s, the rate constants obtained are (× 1012 cm3/molecule · s): isobutane, 2.29 ± 0.06; 2-methylbutane, 3.97 ± 0.11; 2,2-dimethylbutane, 2.66 ± 0.08; 2-methylpentane, 5.68 ± 0.24; 3-methylpentane, 5.78 ± 0.11; 2,2,3-trimethylbutane, 4.21 ± 0.08; 2,4-dimethylpentane, 5.26 ± 0.11; methylcyclohexane, 10.6 ± 0.3; 2,2,3,3-tetramethylbutane, 1.06 ± 0.08; and 2,2,4-trimethylpentane, 3.66 ± 0.16. Rate constants for 2,2-dimethylbutane, 2,4-dimethylpentane, and methylclohexane have been determined for the first time, while those for the other branched alkanes are in generally good agreement with the literature data. Primary, secondary, and tertiary group rate constants at room temperature have been derived from these and previous data for alkanes and unstrained cycloalkanes, with the secondary and tertiary group rate constants depending in a systematic manner on the identity of the neighboring groups. The use of these group rate constants, together with a previous determination of the effect of ring strain energy on the OH radical rate constants for a series of cycloalkanes, allows the a priori estimation of OH radical rate constants for alkanes and cycloalkanes at room temperature.  相似文献   

14.
Relative rate constants for the reaction of OH radicals with a series of ketones have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of hydroxyl radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10?12 cm3 molecule?1 s?1, the rate constants obtained are (× 1012 cm3 molecule?1 s?1): 2-pentanone, 4.74 ± 0.14; 3-pentanone, 1.85 ± 0.34; 2-hexanone, 9.16 ± 0.61; 3-hexanone, 6.96 ± 0.29; 2,4-dimethyl-3-pentanone, 5.43 ± 0.41; 4-methyl-2-pentanone, 14.5 ± 0.7; and 2,6-dimethyl-4-heptanone, 27.7 ± 1.5. These rate constants indicate that while the carbonyl group decreases the reactivity of C? H bonds in the α position toward reaction with the OH radical, it enhances the reactivity in the β position.  相似文献   

15.
Using methyl nitrite photolysis in air as a source of hydroxyl radicals, relative rate constants for the reaction of OH radicals with a series of alkanes and alkenes have been determined at 299 ± 2 K. The rate constant ratios obtained are: relative to n-hexane = 1.00, neopentane 0.135 ± 0.007, n-butane 0.453 ± 0.007, cyclohexane 1.32 ± 0.04; relative to cyclohexane = 1.00, n-butane 0.341 ± 0.002, cyclopentane 0.704 ± 0.007, 2,3-dimethylbutane 0.827 ± 0.004, ethene 1.12 ± 0.05; relative to propene = 1.00, 2-methyl-2-butene 3.43 ± 0.13, isoprene 3.81 ± 0.17, 2,3-dimethyl-2-butene 4.28 ± 0.21. These relative rate constants are placed on an absolute basis using previous absolute rate constant data and are compared and discussed with literature data.  相似文献   

16.
The kinetics of the gas-phase reactions of O3 with a series of alkenes have been investigated at atmospheric pressure (ca. 740 torr) of air and 296 ± 2 K, using a relative rate method in the presence of sufficient n-octane to scavenge any OH radicals generated in these reactions. Relative to k(O3 + propene) = 1.00, the rate constants obtained were: 1-butene, 0.975 ± 0.030; 2-methylpropene, 1.14 ± 0.04; 2-methyl-1,3-butadiene (isoprene), 1.21 ± 0.02; 1,4-cyclohexadiene, 4.75 ± 0.23; cyclohexene, 7.38 ± 0.48; cis-2-butene, 12.8 ± 0.8; trans-2-butene, 21.5 ± 1.5; 2-methyl-2-butene, 42.1 ± 2.8; cyclopentene, 64.9 ± 4.3; and 2,3-dimethyl-2-butene, 123 ± 11. These relative rate constants have been placed on an absolute basis using a rate constant for the reaction of O3 with propene of 1.01 × 10?17 cm3 molecule?1 s?1 at 296 K derived from an analysis of the available literature data. The resulting rate constants then lead to a self-consistent set of room temperature data for the reactions of O3 with these alkenes. © John Wiley & Sons, Inc.  相似文献   

17.
Relative rate constants for the gas-phase reactions of OH radicals with a series of bi- and tricyclic alkanes have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10?12 cm3/molec·s, the rate constants obtained are (× 1012 cm3/molec·s): bicyclo[2.2.1]heptane, 5.53 ± 0.15; bicyclo[2.2.2]octane, 14.8 ± 1.0; bicyclo[3.3.0]octane, 11.1 ± 0.6; cis-bicyclo[4.3.0]nonane, 17.3 ± 1.3; trans-bicyclo[4.3.0]nonane, 17.8 ± 1.3; cis-bicyclo[4.4.0]decane, 20.1 ± 1.4; trans-bicyclo[4.4.0]decane, 20.6 ± 1.2; tricyclo[5.2.1.02,6]decane, 11.4 ± 0.4; and tricyclo[3.3.1.13,7]decane, 23.2 ± 2.1. These data show that overall ring strain energies of ?4–5 kcal mol?1 have no significant effect on the rate constants, but that larger ring strain results in the rate constants being decreased, relative to those expected for the strain-free molecules, by ratios which increase approximately exponentially with the overall ring strain.  相似文献   

18.
Using a relative rate method, rate constants for the gas phase reactions of O3 with 1‐ and 3‐methylcyclopentene, 1‐, 3‐, and 4‐methylcyclohexene, 1‐methylcycloheptene, cis‐cyclooctene, 1‐ and 3‐methylcyclooctene, 1,3‐ and 1,5‐cyclooctadiene, and 1,3,5,7‐cyclooctatetraene have been measured at 296 ± 2 K and atmospheric pressure of air. The rate constants obtained (in units of 10?18 cm3 molecule?1 s?1) are 1‐methylcyclopentene, 832 ± 24; 3‐methylcyclopentene, 334 ± 12; 1‐methylcyclohexene, 146 ± 10; 3‐methylcyclohexene, 55.3 ± 2.6; 4‐methylcyclohexene, 73.1 ± 3.6; 1‐methylcycloheptene, 930 ± 24; cis‐cyclooctene, 386 ± 23; 1‐methylcyclooctene, 1420 ± 100; 3‐methylcyclooctene, 139 ± 9; cis,cis‐1,3‐cyclooctadiene, 20.0 ± 1.4; 1,5‐cyclooctadiene, 152 ± 10; and 1,3,5,7‐cyclooctatetraene, 2.60 ± 0.19, where the indicated errors are two least‐squares standard deviations and do not include the uncertainties in the rate constants for the reference alkenes (propene, 1‐butene, cis‐2‐butene, trans‐2‐butene, 2‐methyl‐2‐butene, and terpinolene). These rate data are compared with the few available literature data, and the effects of methyl substitution discussed. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 183–190, 2005  相似文献   

19.
Rate constants for the gas-phase reactions of O3 with a series of monoterpenes and related compounds have been determined at 296 ± 2 K and 740 torr total pressure of air or O2 using a combination of absolute and relative rate techniques. Good agreement between the absolute and relative rate data was observed, and the rate constants obtained (in units of 10?17 cm3 molecule?1 s?1) were: α-pinene, 8.7; β-pinene, 1.5; Δ3-carene, 3.8; 2-carene, 24; sabinene, 8.8; d-limonene, 21; γ-terpinene, 14; terpinolene, 140; α-phellandrene, 190; α-terpinene, 870; myrcene, 49; trans-ocimene, 56; p-cymene, <0.005; and 1,8-cineole, <0.015. While these rate constants for α- and β-pinene and sabinene are in good agreement with recent absolute and relative rate determinations, those for the other monoterpenes are generally lower than the literature data by factors of ca. 2–10. The measured rate constants for the monoterpenes are reasonably consistent with predictions based upon the number and positions of the substituent groups around the 〉C?C〈 bond(s).  相似文献   

20.
Using a relative rate method, rate constants have been determined at 296 ± 2 K for the gas-phase reactions of the OH radical with toluene, the xylenes, and the trimethylbenzenes. Using the recommended literature rate constant for the reaction of OH radicals with propene of (2.66 ± 0.40) × 10?11 cm3 molecule?1 s?1, the following rate constants (in units of 10?12 cm3 molecule?1 s?1) were obtained: toluene, 5.48 ± 0.84; o-xylene, 12.2 ± 1.9; m-xylene, 23.0 ± 3.5; p-xylene, 13.0 ± 2.0; 1,2,3-trimethylbenzene, 32.7 ± 5.3; 1,2,4-trimethylbenzene, 32.5 ± 5.0; and 1,3,5-trimethylbenzene, 57.5 ± 9.2. These data are compared with the literature values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号