首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
4.
5.
6.
On mechanochemical treatment of α- and β-PbO2, respectively in a vibration mill an enantiotropic phase transformation was observed, leading to a mechanochemical equilibrium. Chosen conditions of milling presumed, this equilibrium will yield 90% of α- and 10% of β-PbO2. This was deduced from quantitative x-ray analysis and derivatographic investigations.  相似文献   

7.
8.
9.
About the Stereospecific α-Alkylation of β-Hydroxyesters It was found, that dianions derived from β-hydroxyesters with lithium diisopropylamide (LDA) at ?50 to ?20° were alkylated stereospecifically (Scheme 1). The stereospecificity was 95–98%, the threo-compound (threo -2, -3 and -4) being the main product. This was proved for threo -2 and -3 by preparing the β-lactones 7 and 8 , respectively, which were pyrolyzed to trans-1, 4-hexadiene (9) and trans-1-phenyl-2-butene (10) , respectively (Scheme 2). Moreover, the acid threo -6 from threo -3 was converted by dimethylformamide-dimethylacetal to cis-1-phenyl-2-butene (11) (s. footnote 6). The alkylation of α-monosubstituted β-hydroxyesters also turned out to be stereospecific. Reduction of 16 and 18 with actively fermenting yeast furnished (+) -17 and (+) -2. respectively (Scheme 4), which were each mixtures of the (2R, 3S)- and the (2S, 3S)-isomers. Alkylation of (+) -17 with allyl bromide yielded after chromatography (2S, 3S) -19 and of (+) -2 with methyl iodide (2R, 3S) -19 , the oxidation of which finally gave (S)-(?) -20 and (R)-(+) -20 , respectively.  相似文献   

10.
11.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
On triplet excitation (E)- 2 isomerizes to (Z)- 2 and reacts by cleavage of the C(γ), O-bond to isomeric δ-ketoester compounds ( 3 and 4 ) and 2,5-dihydrofuran compounds ( 5 and 19 , s. Scheme 1). - On singulet excitation (E)- 2 gives mainly isomers formed by cleavage of the C(γ), C(δ)-bond ( 6–14 , s. Scheme 1). However, the products 3–5 of the triplet induced cleavage of the C(γ), O-bond are obtained in small amounts, too. The conversion of (E)- 2 to an intermediate ketonium-ylide b (s. Scheme 5) is proven by the isolation of its cyclization product 13 and of the acetals 16 and 17 , the products of solvent addition to b . - Excitation (λ = 254 nm) of the enol ether (E/Z)- 6 yields the isomeric α, β-unsaturated ε-ketoesters (E/Z)- 8 and 9 , which undergo photodeconjugation to give the isomeric γ, δ-unsaturated ε-ketoesters (E/Z)- 10 . - On treatment with BF3O(C2H5)2 (E)- 2 isomerizes by cleavage of the C(δ), O-bond to the γ-ketoester (E)- 20 (s. Scheme 2). Conversion of (Z)- 2 with FeCl3 gives the isomeric furan compound 21 exclusively.  相似文献   

13.
14.
15.
Rearrangements of the Phenylthio Group of Trimethylsilyl-enolethers of α,α-Dialkylated α-Phenylthio-ketones Trimethylsilyl-enolethers of α,α-dialkylated α-phenylthio-ketones undergo a photochemically induced 1,3-phenylthio shift leading to isomeric enolethers in high yields. The rearrangement can also be carried out under thermal conditions, but the results are less satisfying.  相似文献   

16.
Irradiation in the n→π* absorption band of the α,β-unsaturated γ,δ-epoxyketone 5 in ethanol at ?65° exclusively afforded the rearranged ene-dione 13 , whereas at + 24° under otherwise unchanged reaction conditions or upon triplet sensitization with Michler's ketone and with acetophenone at + 24° essentially identical mixtures of 13 (major product), 14 , and 15 were obtained. Selective π→π* excitation of 5 at ?78° and + 24° led to similar product patterns. The 9β,10β-epimeric epoxyketone 7 selectively isomerized to 14 and 15 at + 24° and n → π* or π → π* excitation. Neither the epoxyketones 5 and 7 nor the photoproducts 13–15 were photochemically interconverted. In separate photolyses each of the latter gave the double bond isomers 16 , 18 , and 19 , respectively. Cleavage of 13 to the dienone aldehyde 17 competed with the double bond shift ( → 16 ) when photolyzed in alcoholic solvents instead of benzene. The selective transformations 5 → 13 (at ?65° and n → π* excitation) and 7 → 14 + 15 are attributed to stereoelectronic factors facilitating the skeletal rearrangements of the diradicals 53 and 55 , the likely primary photoproducts resulting from epoxide cleavage in the triplet-excited compounds 5 and 7 , via the transition states 54 , 56 , and 57 . The loss of selectivity in product formation from 5 at higher temperature and n → π* excitation or triplet sensitization is explicable in terms of radical dissociation into 58 and 59 increasingly participating at the secondary thermal transformations of 53 . The similar effect of π → π* excitation even at ?78° indicates that some of the π,π* singlet energy may become available as thermal activation energy. It is further suggested that the considerably lesser ring strain in 14 and 15 , as compared with 13 , is responsible that selectivity in product formation from 7 is maintained also at +24° and at π → π* excitation.  相似文献   

17.
18.
By chemical correlation with manool and ambrein the absolute configurations of the enantiomeric α-cyclogeranic acids, α-cyclogeranials, α-ionones and α- and ?-carotenes have been elucidated.  相似文献   

19.
Skeleton Rearrangement of an α-β-Unsaturated γ,δ-Epoxyketone during Birch Reduction: Structure Elucidation by Means of 13C-INADEQUATE-NMR Spectroscopy When the γ-epoxide 2 of β-ionone is treated under standard Birch-reduction conditions, unexpectedly a 70% combined yield of regioisomeric octalones 4 and 5 is isolated. These products unquestionably result form cleavage of the central epoxide C?C bond. The structure of compounds 4 and 5 could be determined by means of 13C-INADEQUATE-NMR spectroscopy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号