首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative 1H NMR spectroscopic methods are not frequently reported, but current NMR instrumentation allows ready access to such data. Mebeverine HCl is an attractive molecule for NMR spectroscopy teaching purposes as it possesses a variety of simple but significant functional groups; we fully assign its 1H and 13C NMR spectra. Using mebeverine HCl, we show that concentration changes, in water as a solvent, can lead to significant changes in the 1H chemical shifts of non-exchangeable aromatic protons and to a lesser extent to aromatic methoxy protons. An important observation is that different protons migrate to different extents as the concentration of the solute is varied, and thus the 1H NMR spectra are concentration-dependent across a useful range. This chemical shift variation of selected protons was therefore analyzed and applied in the quantitative determination of mebeverine HCl in a medicine (Colofac IBS) formulated as a tablet. Self-association phenomena in water could account for these observed chemical shift migration effects as shown by determining the hydrodynamic radius from the modified form of the Stokes-Einstein equation, and thence the apparent hydrodynamic volume, VH, for mebeverine HCl in D2O solution which is 10-fold greater than that seen in either CDCl3 or CD3OD.  相似文献   

2.
This study presents for the first time an NMR spectroscopic characterization of the room and high temperature phases of (NH4)3InF6 using 19F and 115In as probe nuclei. The reversible phase transition to the cubic phase at 353 K was followed by MAS NMR in situ. Static NMR experiments of the room temperature phase and MAS NMR experiments of the high temperature phase allowed the determination of the NMR parameters of both nuclei. Finally, the scalar In-F coupling, rarely observed in solid state NMR, is evidenced in both room and high temperature phases of (NH4)3InF6, and measured in the high temperature phase.  相似文献   

3.

Silver(I) complexes of selenones, [LAgNO3] and [AgL2]NO3 (where L is imidazolidine-2-selenone or diazinane-2-selenone and their derivatives) have been prepared and characterized by elemental analysis, IR and NMR (1H, 13C and 107Ag) spectroscopy. An upfield shift in the C=Se resonance of selenones in 13C NMR and a downfield shift in N-H resonance in 1H NMR are consistent with selenium coordination to silver(I). In 107Ag NMR, the AgNO3signal is deshielded by 450-650 ppm on coordination to selenones. Greater upfield shifts in 13C NMR were observed for [LAgNO3] compared to [AgL2]NO3complexes, whereas the opposite trend was observed for 1H and107Ag NMR chemical shifts.  相似文献   

4.
A new way of modifying aluminum sec-butoxide (Al(OBus)3) is proposed. This synthesis is carried out by reacting Al(OBus)3 dissolved in tetrahydrofuran with an unsaturated acid, viz. acrylic acid.The structure evolution of Al(OBus)3 with increasing acrylic acid amounts is investigated by infrared, 1H NMR, 13 C NMR, and 27Al NMR spectroscopies and viscosity measurements. Information obtained suggests that the exchange reaction occurring between butoxy groups and acrylate ligands is stopped for an acid/alkoxide molar ratio within the range 1.6–1.7. This value leads us to assume that the dominant trimeric species of precursor is preserved after modification. Moreover, 27Al NMR analysis only reveals the presence of hexacoordinated Al sites in the structure of the modified Al(OBus)3.Evidence of the acrylic acid reaction with sec-butanol released during the alkoxide modification is also proved by the infrared and 13 C NMR data. However the produced ester amount can be considered as negligible.  相似文献   

5.
The development of sensitive and chemically selective MRI contrast agents is imperative for the early detection and diagnosis of many diseases. Conventional responsive contrast agents used in 1H MRI are impaired by the high abundance of protons in the body. 129Xe hyperCEST NMR/MRI comprises a highly sensitive complement to traditional 1H MRI because of its ability to report specific chemical environments. To date, the scope of responsive 129Xe NMR contrast agents lacks breadth in the specific detection of small molecules, which are often important markers of disease. Herein, we report the synthesis and characterization of a rotaxane‐based 129Xe hyperCEST NMR contrast agent that can be turned on in response to H2O2, which is upregulated in several disease states. Added H2O2 was detected by 129Xe hyperCEST NMR spectroscopy in the low micromolar range, as well as H2O2 produced by HEK 293T cells activated with tumor necrosis factor.  相似文献   

6.
The 1H NMR data of agrocinopine in D2O solution as extracted from standard 2D NMR experiments, along with 1D 31P and 13C NMR experiments allow to support the trisaccharide structure originally proposed on basis of comparative 13C NMR measurements.  相似文献   

7.
New hyperbranched polymers based on a carbosiloxane–carbosilane skeleton with aromatic units in the backbone have been prepared via one-pot hydrosilylation reaction using HSi(Me)2–O–CH2–C6H4–OSiMe–(CH2)4(C3H5)2 as a novel AB2 monomer. These polymers are easy to prepare, have narrow polydispersity values and present allyl groups on the surface which can be used as synthetic platforms for the introduction of different terminal groups like amine groups through hydrosilylation reactions, opening the door to functionalized polymers. The polymerization process was monitored using real-time 1H NMR spectroscopy and the resulting hyperbranched polymers were characterized using 1H NMR, 13C NMR, 29Si NMR and SEC/MALLS. The degree of branching in these polymers was determined by quantitative 29Si NMR spectroscopy and found to be very close to the theoretical value of 0.50 for AB2 systems. The hydrolytic degradation of these polymers in protic solvents has been studied by 29Si NMR.  相似文献   

8.
The novel organosilicon, -germanium and -tin-containing carbene complexes of tungsten of the type Ph3E-CHWCl2(OBut)2 (E=Si, Ge, Sn) have been prepared by the reaction of heteroelement-containing carbene complexes of tungsten Ph3E-CW(OBut)3 (E=Si, Ge, Sn) with hydrogen chloride. The tin-containing carbene complex was identified in solution by 1H NMR spectroscopy. Silicon- and germanium-containing carbene complexes were isolated in high yields as crystalline solids and characterized by elemental analysis, IR, 1H NMR, 13C NMR and 29Si NMR spectroscopy and X-ray diffraction studies. The geometry of the W atoms in the compounds can be described as a distorted square pyramid.  相似文献   

9.
The use of the Bayliss-McRae theory on the solvent induced electronic frequency shifts for NMR dispersion shifts is criticized. It is suggested that the NMR shifts should actually be proportional to the square of the Bayliss-McRae function. It is shown that the methane gas-to-liquid shifts in eleven halo-methanes as solvents are indeed proportional to this squared function; ?σm(CH4) = 9.62 (n22?1)2/(2n22+1)2 ppm, where n2 is the refractive index of the solvent. The relation between this solvent factor and several existing continuum models for NMR medium shifts is discussed.  相似文献   

10.
Abstract

A number of phosphine selenide ligands and their gold(I) complexes of general formula R3P?Se?Au?X (where X is Cl?, Br? and CN? and R = phenyl, cyclohexyl and tolyl) were prepared. The complexes were characterized by elemental analysis, IR and 31P NMR spectroscopic methods. In the IR spectra of all complexes a decrease in frequency of P?Se bond upon coordination was observed, indicating a decrease in P?Se bond order. 31P NMR showed that the electronegativity of the substituents is the most important factor determining the 31P NMR chemical shift. It was observed that phosphorus resonance is more downfield in alkyl substituted phosphine selenides, as compared to the aryl substituted ones. Ligand disproportionation in the complex Cy3P?SeAuCN in solution to form [Au(CN)2]? and [(Cy3P?Se)2Au]+ was investigated by 13C and 15N NMR spectroscopy.  相似文献   

11.
The Zintl phases M4Si4 with M = Na, K, Rb, Cs, and Ba2Si4 feature a common structural unit, the Si44– anion. The coordination of the anions by the cations varies significantly. This allows a systematic investigation of the bonding situation of the anions by 29Si NMR spectroscopy. The compounds were characterized by powder X‐ray diffraction, differential thermal analysis, magnetic susceptibility measurements, 23Na, 29Si, 87Rb, 133Cs NMR spectroscopy, and quantum mechanical calculation of the NMR coupling parameter. The chemical bonding was investigated by quantum mechanical calculations of the electron localizability indicator (ELI). Synthesis of the compounds results for all of them in single phase material. A systematic increase of the isotropic 29Si NMR signal shift with increasing atomic number of the cations is observed by NMR experiments and quantum mechanical calculation of the NMR coupling parameter. The agreement of experimental and theoretical results is very good allowing an unambiguous assignment of the NMR signals to the atomic sites. Quantum mechanical modelling of the NMR shift parameter indicates a dominant influence of the cations on the isotropic 29Si NMR signal shift. In contrast to this a negligible influence of the geometry of the anions on the NMR signal shift is obtained by these model calculations. The origin of the systematic variation of the isotropic NMR signal shift is not yet clear although an influence of the charge transfer estimated by calculation using the QTAIM approach is indicated.  相似文献   

12.
Solid state 2H NMR has been used to study molecular motion in deuterated ammonia trimethylalane (CH3)3AlND3. From analysis of the 2H NMR lineshape between 123 and 298 K, reorientation of the -ND3 group about the molecular Al-N axis is shown to occur at a rate higher than 108 s-1, and simulation of partially relaxed 2H NMR lineshapes shows that the reorientation can be described as a 3-site 120° jump motion. From the temperature dependence of the 2H spin-lattice relaxation time, the activation energy for this motion is estimated to be 9.3±0.3 kJ mol-1. There is no evidence from either 2H or 27Al NMR data for any site-exchange between the sites occupied by the -ND3 and -CH3 groups. The anisotropy of the dynamics of (CH3)3AlND3 indicates that the orientation of the Al-N bond is highly constrained, presumably by a strong interaction between the electric dipoles of neighboring molecules.  相似文献   

13.
The high-field 19F and 91Zr NMR method is used to study the hydrolysis and polycondensation of hexafluorozirconate ZrF62− in aqueous and water-peroxide solutions. During hydrolysis in aqueous solutions only ZrF62− and F ions were observed by NMR, however, in the water-peroxide medium, an intermediate product of hydrolysis ([F5Zr-OO-ZrF5]4− dimer) was detected. The dimer structure is confirmed by 19F and 91Zr NMR. In high fields (19F NMR frequency > 200 MHz), the fluorine exchange between ZrF62− and F is slow in the 19F NMR scale and has a multisite character.  相似文献   

14.
A systematic study of the accuracy factors for the computation of 15N NMR chemical shifts in comparison with available experiment in the series of 72 diverse heterocyclic azines substituted with a classical series of substituents (CH3, F, Cl, Br, NH2, OCH3, SCH3, COCH3, CONH2, COOH, and CN) providing marked electronic σ‐ and π‐electronic effects and strongly affecting 15N NMR chemical shifts is performed. The best computational scheme for heterocyclic azines at the DFT level was found to be KT3/pcS‐3//pc‐2 (IEF‐PCM). A vast amount of unknown 15N NMR chemical shifts was predicted using the best computational protocol for substituted heterocyclic azines, especially for trizine, tetrazine, and pentazine where experimental 15N NMR chemical shifts are almost totally unknown throughout the series. It was found that substitution effects in the classical series of substituents providing typical σ‐ and π‐electronic effects followed the expected trends, as derived from the correlations of experimental and calculated 15N NMR chemical shifts with Swain–Lupton's F and R constants.  相似文献   

15.
Perturbation theory on optical ac Stark effect is applied to study the NMR spectroscopy in paramagnetic systems. Application of the circularly or linearly polarized optical field would lead to shifts in the NMR lines, which is proportional to the laser intensity and the induced polarizability tensors by hyperfine interaction. The induced shift for 193Ir NMR spectrum of [IrBrg]2- is expected to be of the order of 1-10 Hz as resonance is approached with light intensity 10 W·cm-2. For the supersonic molecular beam samples 193IrC, the laser-induced NMR shift is estimated to be as large as 1-10 MHz near resonance.  相似文献   

16.
The structure and rotational barrier for the mesityl-silicon bond of 2,2-dimesityl-1,1,1,3,3,3-hexamethyltrisilane have been investigated by 1H- and 13C-variable temperature nuclear magnetic resonance (NMR) as well as by density functional theory structural calculations. The calculations show that the lowest energy structure has C2 symmetry with nonequivalent ortho methyl groups, consistent with the crystal structure and solution NMR. The nonequivalent ortho methyl groups exchange through a Cs transition state with a calculated relative free energy of 11.0 kcal mol−1. The barrier for this rotation found by dynamic NMR is 13.4 ± 0.2 kcal mol−1 at 298 K.  相似文献   

17.
Employing a multitude of modern solid state NMR techniques including 13C{15N}REDOR NMR, 1H–13C CP NMR, 11B MQMAS NMR spectroscopic experiments, the structural organization of Si2B2N5C4 ceramic has been studied. The experiments were executed on double isotope enriched (13C, 15N) and natural isotope abundance Si2B2N5C4 ceramics. The materials were synthesized by aminolysis and subsequent pyrolysis of intermediate pre‐ceramic polymers that were obtained from the single source precursor TSDE, 1‐(trichlorosilyl)‐1‐(dichloroboryl)ethane (Cl3Si–CH(CH3)–BCl2). The result of the 13C{15N} REDOR NMR spectroscopic experiment shows that carbon atoms are incorporated into the network by bridging to nitrogen, which already occurs during the polymerization step. Furthermore, the combined results of 11B NMR and 11B MQMAS NMR indicate that boron atoms may also be connected to carbon in addition to nitrogen.  相似文献   

18.
Within a temperature range of 120–330 K, 7Li NMR spectra in Li0.6CoO2 are obtained. It is shown that as the temperature increases, both smooth and stepwise variation of 7Li NMR contact shifts occurs. The observed effects are explained by the occupation of the excited levels of cobalt ions. The stepwise change of the resonance line width depending on the temperature is revealed. It is driven by the features of the diffusive motion of lithium ions. The calculation of the 1H NMR line shape provides the determination of the ratio of one-, two-, and three-spin proton clusters in Li0.6CoO2·xH2O.  相似文献   

19.
The reaction of 1-phospha-2,8,9-trioxaadamantane with hexafluoroacetone gives a crystal-line caged polycyclic pentaoxyphosphorane. The ambient temperature fourier transform 13C NMR spectrum of the phosphorane in CH2Cl2 solution, with proton noise-decoupling, shows one singlet for three equivalent methine carbons, and one singlet for three equivalent methylene carbons. Hence, the phosphorane undergoes a rapid permutational isomerization, which is confirmed by the observation of equivalency of the three methine protons and of the three groups of methylene protons in the 1H NMR, and of equivalency of the four CF3 groups in the 19F NMR. The variable temperature 19F NMR spectra in a vinyl chloride-CHFCl2 solvent system disclose that the permutational isomerization of this phosphorane cannot be prevented even at ? 165°, although there is a progressive line-broadening indicative of a decrease in the exchange rate. The 31P NMR spectrum of the phosphorane has a signal at a higher magnetic field (?31P = +42·4 ppm) than H3PO4; the shift is nearly identical in CH2Cl2 and in the acidic (CF3)2CHOH. The remarkably low energy barrier (< ca 5 kcal/mole) for the permutational isomerization of a compound as constrained as the caged oxyphosphorane is attributed to: (1) A small deviation from the perfect trigonal bipyramidal configuration, which raises the ground state energy. (2) The existence of a barrier configuration which can accommodate the constrains of the caged molecule, and is therefore of relatively low energy. The barrier configuration is deduced from the turnstile rotation mechanism of permutational isomerization.  相似文献   

20.
Two 2‐Py‐amidine ligands (2‐Py―NH―C(Ph)═N―Ar, Ar = 2,6‐Me2C6H3 and 2,6‐iPr2C6H3) and the corresponding Ni(II) complexes ( 1 and 2 ) were synthesized and characterized using elemental analysis and FT‐IR, UV–visible, 1H NMR and 13C NMR spectroscopies. X‐ray crystal structures indicate that the chelate ring conformation of the less bulky complex 1 is relatively planar compared with that of the bulky complex 2 . Paramagnetic 1H NMR and 13C NMR studies show that, in solution, the time‐average structures of complexes 1 and 2 have mirror symmetry. Both complexes 1 and 2 were used as catalyst precursors for norbornene polymerization with methylaluminoxane as a co‐catalyst. The effects of Al/Ni ratio, temperature and structure of precursors on the catalytic performance were investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号