首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On Novel Oxoruthenates of the 6 L-Perovskite Type: Ba3SrRu2?xTaxO9 (x = 0.8 and 1.4) with a Comment on Ba3CaRu2O9 Single crystals of the phases Ba3SrRu2?xTaxO9 [(I): x = 0.8 and (II): x = 1.4] and the compound (III): Ba3CaRu2O9 were prepared by a BaCl2 flux and investigated by X-ray methods. (I)–(III) crystallizes with hexagonal symmetry space group P6 2c with lattice constants: (I) a = 6.003 Å; c = 15.227 Å; (II) a = 5.988 Å; c = 15.220 Å and (III) a = 5.891 Å; c = 14.571 Å. The crystal structures of these substances corresponds to the 6 layer perovskites with the stacking sequence (hcc)2. All of them show a so far not described slightly distorted oxygen framework caused by the Sr2+ and Ca2+ ions.  相似文献   

2.
The ligand 2,6-bis(1-methylbenzimidazol-2-yl)pyridine (mbzimpy, 1 ) reacts with EuIII to give [Eu(mbzimpy)(NO3)3(CH3OH)] [ 4 ] whose crystal structure (EuC22H21N8O10, a = 7.658(3) Å, b = 19.136(2) Å, c = 8.882 Å, β = 104.07(1)°, monoclinic, P21, Z = 2) shows a mononuclear structure where EuIII is ten-coordinate by a meridional tridentate mbzimpy ligand, three bidentate nitrates, and one CH3OH molecule, leading to a low-symmetry coordination sphere around the metalion. Essentially the same coordination is found in the crystal structure of [Eu(obzimpy)(NO3)3] ( 8 ) (EuC35H45N8O9, a = 9.095(2) Å, b = 16.624(2) Å, c = 26.198(6) Å, β = 95.85(1)°, monoclinic, P21/c, Z = 4) obtained by reaction of 2,6-bis(1-octylbenzimidazol-2-yl)pyridine (obzimpy, 2 ) with EuIII. Detailed photophysical studies of crystalline [Ln(mbzimpy)(NO3)3(CH3OH)] and [Ln(obzimpy)(NO3)3] complexes (Ln = Eu, Gd, Tb, Lu) show that 1 and 2 display 1ππ* and 3ππ* excited states very similar to those observed in 2,2′:6′,2″-terpyridine, leading to efficient ligand to LnIII intramolecular energy transfer. Spectroscopic results show that an extremely efficient mbzimpy-to-EuIII transfer occurs in [Ln(mbzimpy)(NO3)3(CH3OH)] and in the case of TbIII, a TbIII-to-mbzimpy back transfer is also implied in the deactivation process. The origin of these peculiar effects and the influence of ligand design by going from mbzimpy to obzimpy are discussed. 1H-NMR and luminescence data indicate that the structure found in the crystal is essentially maintained in solution.  相似文献   

3.
Gas Phase Structure of CF3NCl2 and Preparation of CF3NCl2F+MF6? (M = As, Sb) and CF2 = NCl2F+SbF6? The gas phase structure of CF3NCl2 is reported. The following skeletal parameters are derived (ra-values, error limits are 3σ values): N? C = 1.470(6) Å, N? Cl = 1.733(3) Å, ClNCl = 111.5(4)° and ClNC = 107.6(5)°. CF3NCl2F+MF6? is prepared by fluorination of CF3NCl2 with XeF+MF6?. The same educt CF3NCl2 reacts with XeF+SbF6? at ?40°C to CF2 = NClF+SbF6? under elimination of ClF.  相似文献   

4.
Ba7Fe6F32 · 2H2O was prepared from HF aqueous solution in a teflon bomb (Berghof) at 180°C. A partial exchange F?/OH? can be realized in more diluted HF medium and leads to Ba7Fe6F32–x(OH)x · 2H2O. The compounds crystallize in the monoclinic system, space group C2/m (Z = 2) with a = 17.023(1) Å, b = 11.482(1) Å, c = 7.624(1) Å, β = 101.13(1)° for x = 0 and a = 17.036(2) Å, b = 11.489(1) Å, c = 7.620(2) Å, β = 101.48(1)° for x ≈? 5.3. The structures were determined from 2 256 and 1 343 independent reflections for x = 0 and x ≈? 5.3 respectively, collected with a Siemens AED2 four-circle diffractometer with the MoKα radiation (R = 0.0235 and Rw = 0.0240 for x = 0 and R = 0.0324 and Rw = 0.0335 for x ≈? 5.3). The structure, closely related to that of the Jarlite-type, is built up from isolated octahedra trimers [Fe3F16]7?, connected together by Ba2+-cations. The location of anions and water molecules is discussed from bond valence calculations. Magnetic and Mössbauer studies are reported and discussed.  相似文献   

5.
A Contribution on the Compound CaBeNd2O5 and Phases of the Composition M1?xMx'BeLn2O5 (M = Ca, Ba; M′ = Sr; x = 0.5). CaBeNd2O5 and the phases (I): Ba0,5Sr0,5BeLa2O5 and (II): Ca0,5Sr0,5BeDy2O5 have been prepared by high temperature reactions using a CO2-LASER. They crystallize with orthorhombic symmetry, space group D-Pnma, CaBeNd2O5: a = 9.448(1), b = 7.155(1), c = 6.483(1) Å; (I) a = 9.821(4), b = 7.436(3), c = 6.734(3) Å; (II): a = 9.352(2), b = 7.016(2), c = 6.375(2) Å; Z = 4, and belong to the isotypic series CaBeLn2O5 and SrBeLn2O5. Calculations of Coulomb energies of ordered BaBeLn2O5 and EuBeLn2O5 and disordered CaBeLn2O5, SrBeLn2O5 and EuBeNd2O5 show dependencies of the ionic radii of the M2+ and Ln3+ ions as well as of the order/disorder state.  相似文献   

6.
(NH4)2PO3H, H2O crystallizes in the monoclinic system, space group P21/c, with a = 6.322(1) Å, b = 8.323(1) Å, c = 12.676(1) Å, β = 98.84(1) and Z = 4. The structure was refined to R = 0.022 based on 853 independent X-Rays intensities. Improved dimensions of the tetrahedral PO3H2? ion have been obtained: P?H = 1.34(2) and P?O = 1.514(2) Å. The geometry of this ion is compared with that of PO3F2? and SO32? ions and we find a decrease of the volume: VF? > VH+ > Vlone pair.  相似文献   

7.
The Reactions of M[BF4] (M = Li, K) and (C2H5)2O·BF3 with (CH3)3SiCN. Formation of M[BFx(CN)4—x] (M = Li, K; x = 1, 2) and (CH3)3SiNCBFx(CN)3—x, (x = 0, 1) The reaction of M[BF4] (M = Li, K) with (CH3)3SiCN leads selectively, depending on the reaction time and temperature, to the mixed cyanofluoroborates M[BFx(CN)4—x] (x = 1, 2; M = Li, K). By using (C2H5)2O·BF3 the synthesis yields the compounds (CH3)3SiNCBFx(CN)3—x x = 0, 1. The products are characterized by vibrational and NMR‐spectroscopy, as well as by X‐ray diffraction of single‐crystals: Li[BF2(CN)2]·2Me3SiCN Cmc21, a = 24.0851(5), b = 12.8829(3), c = 18.9139(5) Å V = 5868.7(2) Å3, Z = 12, R1 = 4.7%; K[BF2(CN)2] P41212, a = 13.1596(3), c = 38.4183(8) Å, V = 6653.1(3) Å3, Z = 48, R1 = 2.5%; K[BF(CN)3] P1¯, a = 6.519(1), b = 7.319(1), c = 7.633(2) Å, α = 68.02(3), β = 74.70(3), γ = 89.09(3)°, V = 324.3(1) Å3, Z = 2, R1 = 3.6%; Me3SiNCBF(CN)2 Pbca, a = 9.1838(6), b = 13.3094(8), c = 16.840(1) Å, V = 2058.4(2) Å3, Z = 8, R1 = 4.4%  相似文献   

8.
Tribochemical and Thermal Transitions of LnTa3O9 (Ln = Pr, Nd) — X-ray and Electron Microscopic Investigations Upon grinding crystals of M1? LnTa3O9 (Ln = Pr, Nd) [3] undergo a tribochemical phase transition. This leads to a new modifikation M2? LnTa3O9 with a significant higher density. We tried to find out more about the structure with high resolution electron microscopic investigations. According to electron diffraction and powder patterns the lattice parameters are (CuKα1, λ = 1,54051 Å): M2? PrTa3O9: a = 6.2545(7) Å, b = 7.6736(7) Å, c = 6.5316(8) Å, β = 93.93(9)°; M2? NdTa3O9: a = 6.2552(5) Å, b = 7.6598(7) Å, c = 6.5103(4) Å, β = 94.096(7)°; (Z = 2). Using the intensities of powder patterns two structure models were calculated (space group P21/m, P2/m; R < 20%, heavy metal positions only). A through focus series of high resolution images was in better agreement with the first model (space group P21/m). Both models show a remarkable similarity to the structure of M? CeTa3O9 [4]. A thermal phase transition leads to M? PrTa3O9 and M? NdTa3O9 which are both isostructural to M? CeTa3O9.  相似文献   

9.
The new compound Yb2+3—xPd12—3+xP7 x = 0.40(4)) was synthesized by sintering of a mixture of elemental components at 1100 °C with subsequent annealing at 800 °C. The crystal structure of Yb2+3—xPd12—3+xP7 was solved and refined from X‐ray single‐crystal diffraction data: space group P6¯, a = 10.0094(4)Å, c = 3.9543(2)Å, Z = 1; R(F) = 0.022 for 814 observed unique reflections and 38 refined parameters. The atomic arrangement reproduces a structure motif of the hexagonal Zr2Fe12P7 type in which one of the transition metal positions is substituted predominantly by ytterbium (Yb : Pd = 0.86(1) : 0.14). The ytterbium atoms are embedded in the 3D polyanion formed by palladium and phosphorus atoms. Two different environments for ytterbium atoms are present in the structure. Magnetic susceptibility measurements and XAS spectroscopy at the Yb LIII edge show the presence of ytterbium in two electronic configurations, 4?13 and 4?14. The following model was derived. Ytterbium atoms in the 3k site are in the 4?13 state, the two remaining positions contain ytterbium in intermediate‐valence states, giving totally 79 % ytterbium in the 4?13 electronic configuration.  相似文献   

10.
Synthesis and Crystal Structures of Li4?2xSr2+xB10S19 (x ≈ 0.27) and Na6B10S18. Two Novel Thioborates with Highly Polymeric Macro-tetrahedral Networks Li4?2xSr2+xB10S19 (x ≈ 0.27) and Na6B10S18 were prepared from the reaction of strontium sulfide and lithium sulfide (sodium sulfide) with boron and sulfur at 700°C in graphitized silica tubes. Li4?2xSr2+xB10S19 (x ≈ 0.27) crystallizes in the monoclinic space group P21/c with a = 10.919(2) Å, b = 13.590(3) Å, c = 16.423(4) Å, and β = 90.48(2)°, Na6B10S18 in the tetragonal space group I41/acd with a = 14.415(3) Å, c = 26.137(4) Å. Both structures contain supertetrahedral B10S20 units which are linked through tetrahedral corners to form a three-dimensional polymeric network in the case of Na6B10S18 and one-dimensional chains in the case of Li4?2xSr2+xB10S19 (x ≈ 0.27). All boron atoms are in tetrahedral BS4 coordination (B? S bond lengths vary from 1.879(5) to 1.951(5) Å (1.875(10) to 1.987(9) Å)). The strontium and lithium (sodium) cations are located within large channels formed by the anions.  相似文献   

11.
The Rare Earth Metal Polyselenides Gd8Se15, Tb8Se15?x, Dy8Se15?x, Ho8Se15?x, Er8Se15?x, and Y8Se15?x – Increasing Disorder in Defective Planar Selenium Layers Single crystals of the rare earth metal polyselenides Gd8Se15, Tb8Se15?x, Dy8Se15?x, Ho8Se15?x, Er8Se15?x, and Y8Se15?x (0 < x ≤ 0.3) have been prepared by chemical transport reactions (1120 K→ 970 K, 14 days, I2 as carrier) starting from pre‐annealed powders of nominal compositions between LnSe2 and LnSe1.9. The isostructural title compounds adopt a 3 × 4 × 2 superstructure of the ZrSSi type and can be described in space group Amm2 with lattice parameters of a = 12.161(1) Å, b = 16.212(2) Å and c = 16.631(2) Å (Gd8Se15), a = 12.094(2) Å, b = 16.123(2) Å and c = 16.550(2) Å (Tb8Se15?x), a = 12.036(2) Å, b = 16.060(2) Å and c = 16.475(2) Å (Dy8Se15?x), a = 11.993(2) Å, b = 15.999(2) Å and c = 16.471(2) Å (Ho8Se15?x), a = 11.908(2) Å, b = 15.921(2) Å and c = 16.428(2) Å (Er8Se15?x), and a = 12.045(2) Å, b = 16.072(3) Å and c = 16.626(3) Å (Y8Se15?x), respectively. The structure consists of puckered [LnSe] double slabs and planar Se layers alternating along [001]. The planar Se layers contain a disordered arrangement of dimers, Se2? and vacancies. All compounds are semiconducting and contain trivalent rare earth metals (Ln3+).  相似文献   

12.
Preparation of μ-Sulfurdisulfonium Salts [(CH3)2S? Sx? S(CH3)2]2+2A? (x = 1–3, A? = AsF6?, SbF6?, SbCl6?). On the Analogy of the Reactivity of Sulfanes and Sulfonium Salts The preparation of the μ-sulfurdisulfonium salts [(CH3)2S? Sx? S(CH3)2]2+(A?)2 with x = 1–3 and A? = AsF6?, SbF6?, SbCl6? is reported. The salts are formed by reaction of (CH3)2SH+A? and (CH3)2SSH+A? with SCl2 and S2Cl2, resp. They are characterized by vibrational spectroscopic measurements. [(CH3)2S? S2? S(CH3)2]2+(SbF6?)2 crystallizes in the space group C2/c with a = 1 884.5(7) pm, b = 1 302.8(5) pm, c = 1 477.2(5) pm, β = 98.62(3)° und Z = 8.  相似文献   

13.
Syntheses, Crystal Structures, and Properties of Ln3AuO6 (Ln = Sm, Eu, Gd) The title compounds have been prepared from amorphous Au2O3 · x H2O (x = 1–3) and Ln2O3 (Ln = Nd, Sm, Eu) via solid state reaction under elevated oxygen pressure adding KOH as mineralizing agent. They crystallize in a new structure type (triclinic, P1, Z = 1, Sm3AuO6: a = 3.7272(2) Å, b = 5.6311(2) Å, c = 7.0734(3) Å, α = 90.32(2)°, β = 103.983(3)°, γ = 90.822(2)°, 125 powder intensities, Rp = 2.57%, Eu3AuO6: a = 3.7012(2) Å, b = 5.6134(2) Å, c = 7.0652(4) Å, α = 90.838(3)°, β = 102.956(3)°, γ = 90.909(2)°, 122 powder intensities, Rp = 3.16%, Gd3AuO6: a = 3.6720(2) Å, b = 5.5977(2) Å, c = 7.0636(2) Å, α = 90.509(2)°, β = 102.889(3)°, γ = 91.068(2)°, 3424 reflections, R1 = 12.90%). The crystal structure was solved and refined from single crystal data of Gd3AuO6. The structures of Sm3AuO6 and Eu3AuO6 were refined from powder diffraction data. The isolated square planar AuO4 units are stacked along the a‐axis and are linked by LnO6‐ and LnO6+1‐polyhedra. One of the oxygen atoms is exclusively coordinated by trivalent lanthanides, in tetrahedral geometry. The lanthanoid aurates decompose between 700 and 900 °C into Ln2O3, Au and O2. The magnetic moments μeff(Gd3AuO6) = 7.9 μB and, at 20 °C respectively, μeff(Sm3AuO6) = 1.55 μB as well as μeff(Eu3AuO6) = 3.5 μB confirm that the lanthanides are trivalent. The UV/VIS absorption spectra can be interpreted at assuming free ions.  相似文献   

14.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

15.
Preparation and Crystal Structure of Ln3TiO4Cl5 (Ln = La?Nd) – the First Oxochlortitanates of Rare Earth The compounds Ln3TiO4Cl5 have been prepared by reaction of LnCl3/LnOCl/TiO2 (1:2:1) (Ln = La?Nd) in evacuated silica ampoules. Single crystals of La3TiO4Cl5 were obtained by chemical transport reaction (T2 → T1; T2 = 1050°C, T1 = 950°C) using chlorine (p(Cl2; 298 K) = 1 atm) and sulfur as transport agents with La2TiO5 as starting material. La3TiO4Cl5 crystallizes in the orthorhombic space group Pnma (No. 62) with cell-dimensions a = 16.760(2) Å, b = 4.0991(6) Å, c = 14.634(2) Å, Z = 4. The structure was refined to give R = 4.76%, Rw = 2.47%. Main building units are TiO5 trigonal bipyramides and threefold capped trigonal prisms around La. The relationship to La2TaO4Cl3 will be discussed.  相似文献   

16.
Experiments about the Mixed Crystal Formation between Zincoxotantalates and -antimonates: ZnTa2?xSbxO6 and Zn4Ta2?xSbxO9 In the area of substituted oxotantalates of zinc two new phases of the composition A: ZnTa1·8Sb0·2O6 and B: Zn4Ta1·2Sb0·8O9 were prepared and investigated by X-ray single crystal technique. A crystallizes with tetragonal symmetry (space group D–P42/mnm, a = 4.7314; c = 9.2160 Å; Z = 2). B is monoclinic (space group C–C2/c; a = 15.103; b = 8.839; c = 10.378 Å; β = 93.81°; Z = 8). A crystallizes with trirutile structure, although there is a small replacement of Ta5+ by Sb5+. B maintains the Zn4Ta2O9 structure. One of the point positions of the M5+ ions is occupied statistically by Ta5+/Sb5+ and Zn2+. B is a metastable compound.  相似文献   

17.
On Hexagonal Perovskites with Cationic Vacancies. XXVII. Systems Ba4?xSrxBIIRe2□O12, Ba4B CaxRe2□O12, and Ba4?xLaxBIIRe2?xWx□O12 with BII = Co, Ni In the systems Ba4?xSrxBIIRe2□O12, Ba4BCaxRe2□O12 and Ba4?xLaxBIIRe2?xWx□O12 (BII = Co, Ni) hexagonal perovskites with a rhombohedral 12 L structure (general composition A4BM2□O12; sequence (hhcc)3; space group R&3macr;m) are observed. With the exception of Ba4NiRe2□O12 the octahedral net consists of BO6 single octahedra and M2□O12 face connected blocks (type 1). In type 2 (Ba4NiRe2□O12) the M ions are located in the single octahedra and in the center of the groups of three face connected octahedra. The two outer positions of the latter are occupied by B ions and vacancies in the ratio 1:1. The difference between type 1 and 2 are discussed by means of the vibrational and diffuse reflectance spectra.  相似文献   

18.
Crystal and Molecular Structure of Dicaesium-μ-Oxodecafluorodiarsenate, Cs2(As2F10O) The crystal structure of Cs2(As2F10O) has been determined from three-dimensional data. The compound crystallizes in the monoclinic space group P21/m, the lattice constants being a = 9.175(4), b = 10.690(5), c = 5.619(3)(Å); β = 105,50(5)°. The anion (As2F10O)2– with the point symmetry Cs contains a As? O? As-bridge, whose partial π-bonding is to be discussed. The bond lengths and angles are: As? O: 1.77(2) and 1.68(2) Å, resp., As? O? As: 139(1)°; As…As: 3.225(4) Å, the numbers in parantheses being the standard deviation of the last figure.  相似文献   

19.
Contributions on the Investigation of Inorganic Nonstoichiometric Compounds. XLV. New Thermal Decomposition Products of Ln2CeMO6Cl3 – Preparation of Structure‐related (La, Tb)3.5TaO6Cl4–x The thermal decomposition (T £ 900–1050°C) of Ln2CeMO6Cl3 (M = Nb, Ta; Ln = La, Ce, Pr, Nd, Sm) leads to the formation of two mixed‐valenced phases (Ln, Ce)3.25MO6Cl3.5–x (phase ‘‘AB”︁”︁) and (Ln, Ce)3.5MO6Cl4–x (phase ‘‘BB”︁”︁) and to the formation of chlorine according to redox‐reactions between Ce4+ and Cl. Single crystals of both phases (Ln, Ce)3.25MO6Cl3.5–x (‘‘AB”︁”︁) and (Ln, Ce)3.5MO6Cl4–x (‘‘BB”︁”︁) were obtained by chemical transport reactions using both powder of Ln2CeMO6Cl3 (phase ‘‘A”︁”︁) and powder of (Ln, Ce)3.25MO6Cl3.5–x (phase ‘‘AB”︁”︁) as starting materials and chlorine (p{Cl2; 298 K} = 1 atm) or HCl (p{HCl; 298 K} = 1 atm) as transport agent. A crystal of (La, Ce)3.25NbO6Cl3.5–x (”︁AB”︁”︁) (space group: C2/m, a = 35.288(1) Å, b = 5.418(5) Å, c = 9.522(1) Å, β = 98.95(7)°, Z = 4) was investigated by x‐ray diffraction methods, a crystal of (Pr, Ce)3.5NbO6Cl4–x (”︁BB”︁”︁) was investigated by synchrotron radiation (λ = 0.56 Å) diffraction methods. The lattice constants are a = 18.863(6) Å, b = 5.454(5) Å, c = 9.527(6) Å, β = 102.44(3)° and Z = 4. Structure determination in the space group C2/m (No. 12) let to R1 = 0.0313. Main building units are NbO6‐polyhedra with slightly distorted trigonally prismatic environment for Nb and chains of face‐sharing Cl6‐octahedra along [010]. The rare earth ions are coordinated by chlorine and oxygen atoms. These main structure features confirmed the expected relation to the starting material Ln2CeMO6Cl3 (phase ”︁A”︁”︁) and to (Ln, Ce)3.25MO6Cl3.5–x (phase ”︁AB”︁”︁).  相似文献   

20.
Three new uranyl polyphosphates, α‐K[(UO2)(P3O9)] ( 1 ), β‐K[(UO2)(P3O9)] ( 2 ), and K[(UO2)2(P3O10)] ( 3 ), were prepared by high‐temperature solid‐state reactions. The crystal structures of the compounds have been solved by direct methods: 1 – monoclinic, P21/m, a = 8.497(1), b = 15.1150(1), c = 14.7890(1) Å, β = 91.911(5)°, V = 1898.3(3) Å3, Z = 4, R1 = 0.0734 for 4181 unique reflections with |F0| ≥ 4σF; 2 – monoclinic, P21/n, a = 8.607(1), b = 14.842(2), c = 14.951(1) Å, β = 95.829(5)°, V = 1900.0(4) Å3, Z = 4, R1 = 0.0787 for 3185 unique reflections with |F0| ≥ 4σF; 3 – Pbcn, a = 10.632(1), b = 10.325(1), c = 11.209(1) Å, V = 1230.5(2) Å3, Z = 4, R1 = 0.0364 for 1338 unique reflections with |F0| ≥ 4σF. In the structures of 1 and 2 , phosphate tetrahedra share corners to form infinite [PO3]? chains, whereas, in the structure of 3 , tetrahedra form linear [P3O10]5? trimers. The structures are based upon 3‐D frameworks of U and P polyhedra linked by sharing common O corners. The infinite [PO3]? chains in the structures of 1 and 2 are parallel to [100] and [–101], respectively. The uranyl polyphosphate frameworks are occupied by host K+ cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号