首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyacetylated 5,6,7,8-Tetrahydro-D - and L -neopterins. A Special Case of N(5)-Alkylation of 5,6,7,8-Tetrahydroneopterins Improved conditions are reported for the preparation of the earlier described (6R)- and (6S)-1′-O,2′-O,3′-O,2-N,5-pentaacetyl-5,6,7,8-tetrahydro-L -neopterins, one of which could be obtained as pure crystals. Its structure, determined by X-ray-diffraction analysis, corresponds to the (6R)-enantiomer. The method has also been used to make the corresponding D -diastereoisomers. Further acetylation of (6RS)-1′-O,2′-O,3′-O,2-N-tetraacetyl-5,6,7,8-tetrahydro-D -neopterin under drastic conditions yields a mixture of several polyacetylated D -neopterin derivatives and a polyacetylated ethyl-tetrahydro-D -neopterin which was isolated in crystalline form and established by X-ray-diffraction analysis to be (6R)-1′-O,2′-O,3′-O,4-O,2-N,2-N,8-heptaacetyl-5-ethyl-5,6,7,8-tetrahydro-D -neopterin.  相似文献   

2.
Intensive studies on the diazomethane methylation of the common ribonucleosides uridine, cytidine, adenosine, and guanosine and its derivatives were performed to obtain preferentially the 2′-O-methyl isomers. Methylation of 5′-O-(monomethoxytrityl)-N2-(4-nitrophenyl)ethoxycarbonyl-O6-[2-(4-nitrophenyl)ethyl]-guanosine ( 1 ) with diazomethane resulted in an almost quantitative yield of the 2′- and 3′-O-methyl isomers which could be separated by simple silica-gel flash chromatography (Scheme 1). Adenosine, cytidine, and uridine were methylated with diazomethane with and without protection of the 5′ -O-position by a mono- or dimethoxytrityl group and the aglycone moiety of adenosine and cytidine by the 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) group (Schemes 2–4). Attempts to increase the formation of the 2′-O-methyl isomer as much as possible were based upon various solvents, temperatures, catalysts, and concentration of the catalysts during the methylation reaction.  相似文献   

3.
Identification and synthesis of new depsides isolated from oakmoss (Evernia Prunastri (L .) ACH .) Lecanoric acid 5 and 4 new depsides have been isolated from oakmoss (Evernia Prunastri (L .) ACH .) extracts by means of silicagel column chromatography. Various spectral methods including 13C-NMR. were used in determining the structure of 4,2″-O-methylgyrophoric acid ( 1 ), lecanoric acid ( 5 ), 2′-O-methylevernic acid ( 2 ), 3′-methylevernic acid ( 3 ) and methyl 3′-methyllecanorate ( 4 ).  相似文献   

4.
The dinucleoside phosphate ΠdpΠd ( 4 ) was synthesized from the monomers 1-(5′-O-monomethoxytrityl - 2′ - deoxy - β - D - ribofuranosyl) - 2 (1 H) - pyridone ((MeOTr) Πd, 2 ) and 1-(5′-O-phosphoryl-3′-O-acetyl-2′-deoxy-β-D -ribofuranosyl)-(1H)-pyridone (pΠd(Ac), 3 ). Its 6.4% hyperchromicity and an analysis of the 1H-NMR. spectra indicate that the conformation and the base-base interactions in 4 are similar to those in natural pyrimidine dinucleoside phosphates.  相似文献   

5.
The dinucleating macrocyclic ligands (L2a)2? and (L2b)2? were prepared by [1?:?1] cyclic condensation of N,N′-dipropionitrile-N,N′-ethylene-di(5-methyl-3-formyl-2-hydroxybenzylamine or N,N′-dipropionitrile-N,N′-ethylene-di(5-bromo-3-formyl-2-hydroxybenzylamine with 1,3-diaminopropane. The ligands include dissimilar N(amine)2O2 and N(imine)2O2 coordination sites sharing two phenolic oxygen atoms and containing two propionitrile pendant arms on the amine nitrogen atoms. A series of mono- and dinuclear complexes were synthesized and characterized on the basis of elemental analysis, molar conductance measurement, X-ray crystallography, IR, NMR, and UV-Vis spectroscopies as well as cyclic voltammetric measurements. During the cyclization copper(II) migrates from the N(amine)2O2 to the N(imine)2O2 coordination site and one of the propionitrile pendant arms is removed. The heterodinuclear complexes [ZnL2Cu(OAc)]+ were prepared by a transmetallation reaction. The characterization results showed that the two metal ions are bridged by two phenolic oxygen atoms and an acetate group, providing distorted five-coordinate geometries for both metals.  相似文献   

6.
High-speed counter-current chromatography (HSCCC) was applied to the preparative isolation and purification of peonidin 3-O-(6-O-(E)-caffeoyl-2-O-β-D -glucopyranosyl-β-D -glucopyranoside)-5-O-β-D -glucoside ( 1 ), cyanidin 3-O-(6-O-p-coumaroyl)-β-D -glucopyranoside ( 2 ), peonidin 3-O-(2-O-(6-O-(E)-caffeoyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 3 ), peonidin 3-O-(2-O-(6-O-(E)-feruloyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 4 ) from purple sweet potato. Separation of crude extracts (200 mg) from the roots of purple sweet potato using methyl tert-butyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (1:4:1:5:0.01, v/v) as the two-phase solvent system yielded 1 (15 mg), 2 (7 mg), 3 (10 mg), and 4 (12 mg). The purities of 1 – 4 were 95.5%, 95.0%, 97.8%, and 96.3%, respectively, as determined by HPLC. Compound 2 was isolated from purple sweet potato for the first time. The chemical structures of these components were identified by 1H NMR, 13C NMR and ESI-MSn.  相似文献   

7.
Two new sucrose esters, β-D-(1-O-acetyl-3,6-O-trans-diferuloyl)fructofuranosyl-α-D-2′-O-acetylglucopyranoside (1) and β-D-(1-O-acetyl-3-O-cis-feruloyl-6-O-trans-feruloyl)fructofuranosyl-α-D-2′,4′,6′-O-triacetylglucopyranoside (2), together with four known sucrose esters (36) have been isolated from the rhizome of Sparganium stoloniferum Buch.-Ham. Their structures were elucidated by physical and chemical evidence and spectral analysis.  相似文献   

8.
Thermal or base-promoted conversion of 5′-O-TBDMS-3′-O-(1H-imidazole-1-thiocarbonyl)thymidine (1) afforded 5′-O-TBDMS-2,3′-anhydro-thymidine (2), a pivotal intermediate for the transformation of the 3′-hydroxy group of 2′-deoxyribonucleosides, in high yield.  相似文献   

9.
Abstract

The synthesis of cyclohexyl 2-acetamido-2-deoxy-3-O-{2-O-[2-(guanosine 5′-O-phosphate)ethyl]-α-L-fucopyranosyl}-β-D-glucopyranoside (1), a potential inhibitor of α(1→3)fucosyltransferases, is described. Target compound 1 was assembled via fucosylation of cyclohexyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside (6) with ethyl 2-O-[2-(benzoylhydroxy)ethyl]-3,4-O-isopropylidene-1-thio-β-L-fucopyranoside (5) followed by debenzoylation, subsequent condensation of the resulting compound with 3′,4′ -di-O-benzoyl-5′ -O-(2-cyanoethyl-N,N-diisopropylphosphoramidite)-2-N-diphenylacetylguanosine (10) and deprotection.  相似文献   

10.
A new alkylbenzoquinone named embeliquinone (1) together with five known compounds, lupeol (2), 3-O-[6′-O-palmitoyl-β-d-glucosyl]-spinasta-7,22(23)-diene (3), quercetin (4), (2S,3S,4R,8E)-2-[(2′R)-2′-hydroxy-heneicosanoylamino]-heneicosane-1,3,4-triol-8-ene (5), and β-sitosterol-3-O-β-d-glucopyranoside (6) were isolated from the MeOH leaf extract of Embelia rowlandii by using repeated open column chromatography techniques. The structure of the new compound was characterized by analyses of 1D- and 2D-NMR, and MS data. Embeliquinone (1) had moderate anti-cell proliferation activity against A549 cell line with the IC50 value of 21.8 μM. In addition, 1 exhibited weak antibacterial activities against Klebsiella pneumoniae and Staphylococcus aureus with an MIC value of 206.0 μM in both cases.  相似文献   

11.
Radical C-glycosidation of racemic 5-exo-benzeneselenyl-6-endo-chloro-3-methylidene-7-oxabicyclo[2.2.1]heptan-2-one ((±)-2) with α-acetobromofucose (3) provided a mixture of α-C-fucosides that were reduced with NaBH4 to give two diastereomeric alcohols that were separated readily. One of them ((?)-6) was converted into (?)-methyl 2-acetamido-4-O-acetyl-2,3-dideoxy-3-C-(3′,4′,5′-tri-O-acetyl-2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-α -D-galactopyranuronate ((?)-11) and then into (?)-methyl 2-acetamido-2,3-dideoxy-3-C-(2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-β -D-galactopyranoside ((?)-1), a new α-C(1→3)-L-fucopyranoside of N-acetylgalactosamine. Its 1H NMR data shows that this C-disaccharide (α-L-Fucp-(1→3)CH2-β-D-GalNAc-OMe) adopts a major conformation in solution similar to that expected for the corresponding O-linked disaccharide, i.e., with antiperiplanar σ(C-3′,C-2′) and σ(C-1′,C-3) bonds.  相似文献   

12.
13.
The microbial transformation studies of 7-O-prenylquercetin (1), 4′-O-prenylquercetin (2) and quercetin (3) were investigated with 20 different microbial strains to discover new metabolites. It was revealed that the fungus Mucor hiemalis was the most appropriate micro-organism which was capable of transforming these flavonoids. Structures of the three new (4–6) and one known (7) metabolites were elucidated as 7-O-prenylquercetin 3-O-β-D-glucopyranoside (4), 4′-O-prenylquercetin 3-O-β-D-glucopyranoside (5), 4′-O-prenylquercetin 3′-O-β-D-glucopyranoside (6) and quercetin 5-O-β-D-glucopyranoside (7) by the spectroscopic methods.  相似文献   

14.
Abstract

A systematic synthesis of sulfatide (I) and novel sulfatide analogs (II-VI) carrying 2-(tetradecyl)hexadecyl group as a ceramide substitute is described. The 3-O-, 4-O- and 3,4-di-O-levulinoyl derivatives of galactopyranosyl trichloroacetimidates (1, 12, and 13) were coupled with (2S,3R,4E)-3-O-acetyl-2-octadecanamido-4-octadecene-1,3-diol or 2-(tetradecyl)hexadecan-1-ol. The resulting glycolipids (2, 4, 14, and 15) were each transformed, by selective removal of the levulinoyl group(s), and successive sulfation and de-O-acylation, into the 3-sulfates (I, II), 4-sulfate (III), and 3,4-disulfate (IV). The 6-sulfate (V) was prepared from 2-(tetradecyl)hexadecyl β-D-galactopyranoside (21) via the 6-O-t-butyldimethylsilyl derivative, while the 3′-sulfate of 2-(tetradecyl)hexadecyl β-D-lactoside (VI) was synthesized from 2-(trimethylsilyl)ethyl 3′-O-benzyl-β-D-lactoside (26). The structures of the sulfated glycolipids (I-VI) were characterized by ion-spray MS, MS/MS, and 1H NMR spectrometry.

  相似文献   

15.
Abstract

The Zemplén degradation of 2, 3, 5, 6, 2′, 3′, 4′, 6′-octa-O-benzoylcellobiononitrile (1), -lactobiononitrile (2), and -maltobiononitrile (3) was carried out giving a mixture of the four 3-O-(D-hexopyranosyl)-D-arabinoses. Their reduction gave the 3-O-(D-hexopyranosyl)-D-arabinitols, and their benzoylation gave the 1, 2, 4, 5, 2′, 3′, 4′, 6′-octa-O-benzoyl-(D-hexopyranosyl)-D-arabinitols. Their 1H and 13C NMR spectra are described, and their conformations are determined to be planar zig-zag for the acyclic moieties.  相似文献   

16.
ABSTRACT

Two derivatives of β-maltosyl-(1→4)-trehalose monodeoxygenated at positions 4 or 4′″ have been synthesized in [2+2] block syntheses. After the preparation of precursors with only one free hydroxyl group the deoxy function was introduced by a Barton-McCombie reaction. Thus, glycosylation of 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside (4) with octa-O-acetyl-β-maltose (3) gave tetrasaccharide 5 with only one free hydroxyl group at the 4-position. The 4′-position of an allyl maltoside was available selectively after removal of a 4′,6′-cyclic acetal and selective benzoylation of the 6′-position. Reduction of this derivative 11 afforded allyl O-(2,3-di-O-acetyl-6-O-benzoyl-4-deoxy-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranoside (14), which was deallylated, activated as an trichloroacetimidate, and coupled to 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′,6′-tri-O-benzyl-α-D-glucopyranoside (20). Several compounds were fully characterized by 1H NMR spectroscopy. Deprotection furnished the monodeoxygenated tetrasaccharides 9 and 23.  相似文献   

17.
《Tetrahedron: Asymmetry》2005,16(4):793-800
Inherently chiral anti-O,O′-dibenzyl-p-tert-butylcalix[4]arene 1 was resolved as the (S)-2-methoxy-2-(naphthalen-1-yl)propionic ester by flash chromatography. Conversely, the anti-O,O′-dibutyl analogue 2 was resolved as the (Sa)-2′-methoxy-1,1′-binaphthalene-2-carboxylic ester by crystallization combined with flash chromatography. CD analysis of these compounds indicated the absolute stereochemistries to be (Sa)-(+)-1 and (Sa)-(+)-2, respectively, the former of which was confirmed by X-ray crystallographic analysis.  相似文献   

18.
The hydrogenation of 2′, 3′-O-isopropylidene-5-methyluridine (1) in water over 5% Rh/Al2O3 gave (5 R)- and (5 S)-5-methyl-5, 6-dihydrouridine (2) , separated as 5′-O-(p-tolylsulfonyl)- (3) and 5′-O-benzoyl- (5) derivatives by preparative TLC. on silica gel and ether/hexane developments. The diastereoisomeric differentiation at the C(5) chiral centre depends upon the reaction media and the nature of the protecting group attached to the ribosyl moiety. The synthesis of iodo derivatives (5 R)- and (5 S)- 4 is also described. The diastereoisomers 4 were converted into (5 R)- and (5 S)-2′, 3′,-O-isopropylidene-5-methyl-2, 5′-anhydro-5, 6-dihydrouridine (7) .  相似文献   

19.
The binuclear metal complex [Cu(μ-exoO2)cyclamCu(bpy)](ClO4)2·H2O (bpy?=?2,2′-bipyridine and (exoO2)cyclam?=?1,4,8,11-tetraazacyclotradecanne-2,3-dione) has been synthesized and characterized by single-crystal X-ray analysis and spectroscopic and magnetic measurements. The structure consists of homobinuclear [Cu(μ-exoO2)cyclamCu(bpy)]2+ cations, a weakly coordinated water molecule and perchlorate ions. In each binuclear unit, Cu1, coordinated by four nitrogen atoms of the macrocyclic organic ligand is connected to Cu2 via the exo-cis oxygen atoms of the macrocyclic ligand with Cu···Cu separations of 5.151?Å; Cu2 assumes square-pyramidal geometry. Magnetic properties measured at 2–300?K show antiferromagnetic exchange between adjacent copper(II) ions.  相似文献   

20.
The stereoisomers (3 and 4) of O-ethyl O-phenyl O-(1-methyl-2-ethoxycarbonyl) vinyl phosphorothionate have been synthesized by the reaction of optically active O-ethyl O-phenyl phosphorothiochloride 2 with ethyl acetoacetate under different conditions. 3 (100% Z-isomer, determined by 1H NMR) was synthesized by the reaction of 2 with ethyl sodio-acetoacetate in the mixed solvent of 1:3 toluene-dioxane at 50°C. 4 (>95% E-isomer) was obtained by the reaction of 2 with ethyl acetoacetate in presence of t-BuOK in DMSO at 15°C. 100% E-isomer 4 was separated from crude 4(>95% E-isomer) by column chromatography on silica gel (petroleum ether-ether 6:1). By this reaction either Z- or E-isomers were formed with inversion of the configuration at phosphorus atom. Thus, six stereoisomers of 3 and 4 which were prepared from 2 (RS, S, R) by the above method namely (RS)-Z, (R)-Z, (S)-Z and (RS)-E, (R)-E, (S)-E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号