首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
A set of monodisperse 2,7‐linked carbazole oligomers (3‐mer, 5‐mer, 7‐mer, and 9‐mer) was synthesized, and their photophysical, electrochemical, and thermal properties were investigated. In solutions, these oligomers exhibited bright blue emission with almost quantitative fluorescence quantum yield. The emission spectra of these oligomers in films are quite different. 3‐Mer and 5‐mer exhibited featureless emission spectra, whereas 7‐mer and 9‐mer showed well‐resolved emission spectra.  相似文献   

2.
Summary: A new poly(fluorene‐co‐carbazole) (PFC‐1) with a large substituent group (ADN, a naphthalene‐anthracene derivative moiety) at the 9‐position of carbazole was synthesized. Compared with poly(fluorene‐co‐carbazole)s that have an alkyl substituent group at the 9‐position of the carbazole, the UV‐vis absorption (or photoluminescent emission) peaks of PFC‐1 are in almost the same position both in solution and in the solid state, whereas films of the former give peaks at longer wavelengths than those in solution. The photoluminescent (PL) spectra of PFC‐1 indicate that the attachment of ADN to the poly(fluorene‐co‐carbazole)s gives rise to an efficient blue emission from non‐aggregated ADN. There is no difference evident between PFC‐1 and other reported poly(fluorene‐co‐carbazole)s in PL quantum yield, thermostability, and electrochemical behavior, which suggests that PFC‐1 is an efficient blue emitter.

UV‐Vis spectra of the poly(fluorene‐co‐carbazole) (PFC‐1), with a large substituent group (ADN, a naphthalene‐anthracene derivative moiety) at the 9‐position of carbazole, in toluene and in the film.  相似文献   


3.
Poly(p‐divinylene phenylene) derivatives bearing fluorene and carbazole units in the main chain and 5‐phenyl‐1,3,4‐oxadiazole moieties as side groups were prepared by the polycondensation of a newly synthesized monomer, [2‐(5′‐phenyl‐1′,3′,4′‐oxadiazole‐2′‐yl)‐1,4‐xylylene]bis(triphenyl phosphonium bromide) (OXAD), with 9,9‐dibutylfluorene‐2,2′‐dicarbaldehyde (DBFDA) and 9‐(2‐ethylhexyl)carbazole‐3,6‐dicarbaldehyde (EHCDA), which gave DBFDA–OXAD and EHCDA–OXAD. Analogues of these polymers without the side groups were also synthesized by the reaction of 1,4‐xylene bis(triphenyl phosphonium bromide) (PXYL) with the dicarbaldehydes, which gave DBFDA–PXYL and EHCDA–PXYL. All the synthesized polymers are soluble in organic solvents, giving films of good quality. The polymers are stable beyond 375 °C. They emit blue and blue‐green light, and their quantum yields are 38–79% in solution and 1–24% in film, depending on the fluorene and carbazole units as well as the side groups. In particular, the OXAD‐based polymers contain hole‐facilitating backbones and electron‐facilitating side groups, perhaps allowing these polymers to transport both holes and electrons. Overall, the synthesized polymers are potential candidates for the fabrication of light‐emitting devices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1173–1183, 2002  相似文献   

4.
The title carbazolyl boronic ester, C22H28BNO2, (I), is a building block for the synthesis of new carbazole derivatives of potential utility as pharmaceutically active compounds. The crystal structure of (I) and of the title bromocarbazole compound, C16H16BrN, (II), the synthetic precursor of (I), were solved and analysed with the aim of understanding the lack of reactivity of (I) under Suzuki cross‐coupling reaction conditions. In both structures, the methyl groups are coplanar with the carbazole ring system, and the ethyl group lies out of the carbazole plane. The dioxaborolane ring of boronic ester (I) adopts a half‐chair conformation but lies approximately in a planar orientation with respect of the carbazole ring system, whereas the Br atom of (II) is coplanar with the carbazole plane. In (I), the carbazole–boronic ester C—B bond length is 1.5435 (14) Å, which is somewhat shorter than the usual value of 1.57 Å.  相似文献   

5.
The title compound, C14H11NO2, consists of a carbazole skeleton with carboxyl­ic acid and methyl groups at positions 3 and 4, respectively. Molecules are linked about inversion centres by O—H?O hydrogen bonds [O?O 2.620 (3) Å] to form centrosymmetric dimers.  相似文献   

6.
Four new small molecules – CTDP , BCTDP , CFDP , and BCFDP having D‐π‐A‐π‐D molecular architecture, possessing carbazole and benzocarbazole as electron donors, diketopyrrolopyrrole core as acceptor and thiophene/furan acting as spacer/bridge between donor (carbazole and benzocarbazole) and acceptor (diketopyrrolopyrrole) units are synthesized. All the four compounds exhibited absorption in the range of 300 to 700 nm, and, in particular, more intense absorption found in the 500 to 660 nm region. The estimated band gaps are found to be 1.92 eV for CTDP, 1.92 eV for BCTDP, 1.94 eV for CFDP, and 1.92 eV for BCFDP from their intersection point of absorption and emission spectra. The electrochemical studies revealed that the highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels of all the four compounds, CTDP (−5.03/−3.65 eV), BCTDP (−5.03/−3.65 eV), CFDP (−4.94/−3.65 eV), and BCFDP (−4.90/−3.62 eV) are well matched with PCBM and expected to be act as donor materials in small molecule bulk hetero junction organic solar cells. All the compounds are thermally stable up to 382–416°C.  相似文献   

7.
A novel acrylic monomer‐bearing carbazole chromophore, 3‐methacrylamide‐9‐ethyl‐carbazole and its model compound 3‐isobutyramide‐9‐ethylcarbazole were synthesized by reaction of 3‐amino‐9‐ethyl carbazole and the corresponding acyl chloride in the presence of triethylamine. It can be polymerized easily by using azo‐bisisobutyronitrile as an initiator or photopolymerized without any sensitizer. The photochemical behavior of 3‐methacrylamide‐9‐ethyl‐carbazole, its polymer and 3‐isobutyramide‐9‐ethylcarbazole were investigated by recording the fluorescence spectra in N,N‐dimethylformamide. It was found that the fluorescence intensity of the monomer is dramatically lower than those of its polymer and the model compound in the same chromophore concentration. This phenomenon, termed as the ‘structural self‐quenching effect’, was commonly observed for acrylic monomers bearing chromophore moieties and ascribed to the coexistence of the electron‐donating chromophore and the electron‐accepting double bond within one molecule. The strong fluorescence of the polymer can be quenched by adding electron‐deficient monomers having no chromophore moieties such as methyl methacrylate and acrylonitrile, and the Stern–Volmer constants were determined. It is observed that the higher the electron deficiencies of the quenchers, the higher the Stern–Volmer constants, implying a stronger quenching effect.Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
A novel class of carbazole polymers, nitrogen‐linked poly(2,7‐carbazole)s, was synthesized by polycondensation between two bifunctional monomers using the palladium‐catalyzed amination reaction. The polymers were characterized by 1H NMR, Infrared, Gel permeation chromatography, and MALDI‐TOF MS and it was revealed that the combination of the monomer structures is important for producing high molecular weight polymers. Thermal analysis indicated a good thermal stability with high glass transition temperatures, e.g., 138 °C for the higher molecular weight polymer P2 . To pursue the application possibilities of these polymers, their optical properties and energy levels were investigated by UV‐Vis absorption and fluorescence spectra as well as their electrochemical characteristics. Although the blue light emission was indeed observed for all polymers in solution, the quantum yields were very low and the solid films were not fluorescent. On the other hand, the HOMO levels of the polymers estimated from the onset potentials for the first oxidation in the solid thin films were relatively high in the range of ?5.12 to ?5.20 eV. Therefore, light emitting diodes employing these polymers as a hole‐transport layer and iridium(III) complex as a triplet emitter were fabricated. The device of the nitrogen‐linked poly(2,7‐carbazole) P3 with p,p′‐biphenyl spacer, which has a higher HOMO level and a higher molecular weight, showed a much better performance than the device of P2 with m‐phenylene spacer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3880–3891, 2009  相似文献   

9.
This article investigates the excited and charged states of three branched oligothiophenes with methyl–thienyl side groups as models to promote 3D arrangements. A comparison with the properties of the parent systems, linear all‐α,α‐oligothiophenes, is proposed. A wide variety of spectroscopic methods (i.e., absorption, emission, triplet–triplet transient absorption, and spectroelectrochemistry) in combination with DFT calculations have been used for this purpose. Whereas the absorption spectra are slightly blueshifted upon branching, both the emission spectra and triplet–triplet absorption spectra are moderately redshifted; this indicates a larger contribution of the β‐linked thienyl groups in the delocalization of the S1 and T1 states rather than into the S0 state. The delocalization through the α,β‐conjugated path was found to be crucial for the stabilization of the trication species in the larger branched systems, whereas the linear sexithiophene homologue can only be stabilized up to the dication species.  相似文献   

10.
An eco‐friendly method has been developed for the synthesis of 2‐amino‐4‐(9H‐carbazole‐3‐yl)thiophene‐3‐carbonitriles from preliminary carbazole ( 1 ) through an intermediate of 2‐(1‐(9H‐carbazole‐3‐yl)ethylidene)malononitriles using the Knoevenagel condensation followed by the Gewald reaction. On the other hand, the target compounds could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of 1‐(9H‐carbazole‐3‐yl)ethanone ( 3 ), malononitrile, and elemental sulfur. The merits of this preparation are mild reaction conditions. The Gewald reaction is executed with inorganic base NaHCO3 (H2O) in tetrahydrofuran, easy work‐up procedure with good yields.  相似文献   

11.
A new carbazole‐derived, triphenylamine (TPA)‐containing aromatic dicarboxylic acid monomer, 4,4′‐dicarboxy‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)TPA, was synthesized, and it led to a series of electroactive aromatic polyamides with main‐chain TPA and pendent 3,6‐bis(tert‐butyl)carbazole units by reacting it with various aromatic diamines via the phosphorylation polyamidation technique. The polyamides were amorphous with good solubility in many organic solvents and could be solution‐cast into flexible and strong films. They showed high glass‐transition temperatures (282–335 °C) and high thermal stability (10% weight loss temperatures >480 °C). The electroactive polymer films had well‐defined and reversible redox couples with good cycle stability in acetonitrile solutions. The polymer films also exhibited fluorescent and multielectrochromic behaviors. The anodically electrochromic polyamide films had moderate coloration efficiency (~100 cm2/C) and high optical contrast ratio of transmittance change (Δ%T) up to 47% at 813 nm and 48% at 414 nm for the green coloring. After hundreds of cyclic switches, the polymer films still retained good redox and electrochromic activity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
Three C60‐carbazole adducts have been synthesized by 1, 3‐dipolar cycloaddition reaction. Intramolecular energy/electron transfer from carbazole to C60 was observed by steady‐state absorption and fluorescence spectra. The fluorescence spectra of these adducts were similar to each other and dependent on the excitation wavelength and solvent.  相似文献   

13.
Condensation copolymerization reactions of carbazole 3,6‐diboronate with 4,7‐bis(5‐bromo‐2‐thienyl)‐2,1,3‐benzothiadiazole (DTBT) only produce low‐molecular‐weight donor (D)‐π‐acceptor (A) copolymers. High‐molecular‐weight copolymers for use in optoelectronic devices are necessary for achieving extended π‐conjugation and for controlling the copolymer processibility. To elucidate the cause of the persistently low molecular weight, we synthesized three 3,6‐carbazole‐based D‐A copolymers using copolymerizations of N‐9′‐heptadecanyl‐3,6‐carbazole with DTBT, N‐9′{2‐[2‐(2‐methoxy‐ethoxy)‐ethoxy]‐ethyl}‐3,‐6‐carbazole with DTBT, and N‐9′‐heptadecanyl‐3,6‐carbazole with alkyl‐substituted DTBT. We investigated several parameters for their influence on molecular copolymer weight, including the conformation of the chain during growth, the solubility of the monomers, and the dihedral angles between the donor and acceptor units. Size exclusion chromatography, UV–vis absorption spectroscopy, and computational studies revealed that the low molecular weights of 3,6‐carbazole‐based D‐A copolymers resulted from conjugation breaks and the resulting high coplanarity, which led to strong interactions between polymer chains. These interactions limited formation of high‐molecular‐weight‐copolymers during copolymerization. The strong intermolecular interactions of the 3,6‐carbazole moiety were exploited by incorporating 3,6‐carbazole units into poly[9′,9′‐dioctyl‐2,7‐flourene‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] prepared from 9′,9′‐dioctyl‐2,7‐flourene and DTBT. Interestingly, the number average molecular weight increased gradually with increasing 2,7‐fluorene monomer content but the number of conjugation breaks was a range of 6–7. The hole mobilities of the copolymers were studied for comparison purposes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Poly(2,7‐carbazole) neutral polymers (PC‐N, PC‐NOH, and PC‐P) and polyelectrolytes (PC‐NBr and PC‐SO3Na) with hydrophilic pendant groups of ammonium, phosphonate, and sulfonate were synthesized as interlayers for cathode modifications in bulk‐heterojunction photovoltaic cells (BHJ PVCs). The absorptions of the polymers were determined by the poly(2,7‐carbazole) backbone, showing absorption peaks at ~390 nm for their solutions and films. Because of large intermolecular interactions, excimer emissions with wavelengths higher than 500 nm were found in the photoluminescence spectra of the films of the polymers, which weakened the light emissions of the polymers. PC‐N, PC‐NBr, PC‐NOH, and PC‐P possessed comparable HOMO levels of ?5.23 eV and LUMO levels of ?2.4 eV, but HOMO and LUMO levels of PC‐SO3Na were up‐lying to ?4.91 and ?2.12 eV, respectively. PC‐N, PC‐NBr, PC‐NOH, and PC‐P were selected to construct thin interlayers in BHJ PVCs with PFO‐DBT35:PCBM = 1:4 as the active layer. Compared with traditional Al cathode, bilayer cathodes with the interlayers showed improvements of open‐circuit voltages and short‐circuit currents of the PVCs. PC‐NOH was the best for the photovoltaic performances and over 20% increase of power conversion efficiency (PCE) was achieved. The bilayer cathodes would have great potential to further elevate PCE of BHJ PVCs with other active layer materials. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Efficient cyclization of 1‐(indol‐3‐yl)‐3‐alkyn‐1‐ols in the presence of a cationic gold(I) complex, leading to annulated or specific substituted carbazoles, was observed. Depending on the reaction conditions and substitution pattern, divergent reaction pathways were discovered, furnishing diversified carbazole structures. Cycloalkyl‐annulated [b]carbazoles are obtained through 1,2‐alkyl migration of the metal‐carbene intermediates; cycloalkyl‐annulated [a]carbazoles are formed through a Wagner–Meerwein‐type 1,2‐alkyl shift; carbazole ethers are constructed through ring‐opening of the cyclopropyl group by nucleophilic attack of water or an alcohol.  相似文献   

16.
We report the optical and electroluminescent properties of four novel poly(aryl ether)s ( P1 – P4 ) consisting of alternate isolated hole‐transporting [carbazole or 3,6‐bis(styryl)carbazole] and electron‐transporting [dicyano‐p‐quaterphenyl or bis(trifluoromethyl)‐p‐quaterphenyl] fluorophores. The photoluminescence (PL) spectra of the four polymeric films show maximum peaks around 407–413 nm for P1 , P2 and 442–447 nm for P3 , P4 . The PL spectra of P1 ~ P4 are dependent on the composition of the two isolated fluorophores. According to the observation of relative quantum yield in poor solvent (cyclohexane), P2 containing more bulky trifluoromethyl groups in p‐quaterphenyl segments prevented aggregate quenching processes more than P1 . Compared with P1 and P2 with carbazole segments, P3 and P4 with 3,6‐bis(styryl)carbazole segments exhibited less interchain interaction and a low threshold electric field in a single‐layer device. The p‐quaterphenyl and carbazole [or 3,6‐bis(styryl)carbazole] segments were regarded as electron‐transporting and hole‐transporting units, respectively, in the single‐layer light‐emitting diodes (Al/ P1 – P4 /ITO). In the double‐layer device (ITO/MEH‐PPV/ P2 /Al), the maximum luminance was doubled, and the threshold electric fields diminished because P2 functioned as an electron‐transporting and hole‐blocking layer. Furthermore, the voltage‐tunable multicolor emission from orange to green was observed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 333–340, 2004  相似文献   

17.
In the current study, new carbazole‐based formazan dyes, D‐A and D‐π‐A, were synthesized, and their spectroscopic properties were studied for the first time. For this aim, carbazole aldehyde compounds were modified by the derivatization of carbazole, a natural electron‐donor compound, from 3‐ and 9‐position. Then, hydrazone derivatives were synthesized from these aldehyde derivatives. Finally, D‐A ( 5A–C ) and D‐π‐A ( 6A–C ) carbazole–formazan dyes were obtained by the interaction of the hydrazone compounds with p‐substituted aniline. After characterization of the structures of these compounds, photophysical properties of the carbazole–formazans were studied in the different polarity media (i.e., acetonitrile, toluene, and chloroform) in order to detect the solvent effects. Because of the π‐conjugated bridge and the electron acceptor nitro group at the para position, D‐π‐A structured carbazole–formazan dye 6C showed the highest Stokes shift of 155 nm.  相似文献   

18.
The polymerization of ?‐caprolactone initiated by two catalyst systems was studied: (1) carbazole‐potassium in the presence of 18‐crown‐6 ether and (2) NdCl3/TBP/TIBA (neodymiumtrichloride/tri‐n‐butyl‐phosphate/triisobutylaluminium) at the molar ratio 1/3/1. For both initiator systems conversion/time plots were determined and the polymers were characterized by IR, GPC and by 1H‐ and 13C?NMR spectroscopy. Polyesters with the highest molecular weight (M n?44 000 g/mol) were obtained for the polymerizations initiated by the carbazole‐potassium/18‐crown‐6 ether system. The features of the polymerization initiated by the carbazole‐potassium/18‐crown‐6 ether system are discussed on the basis of a simple scheme. The nature of this polymerization is non‐living. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
2‐Dicyclohexyl‐ and 2‐diphenylphosphinophenol, CCHH and PPHH , react with Ni(1,5‐COD)2 to form catalysts for polymerization of ethylene in or copolymerization with α‐olefins. The more P‐basic CCHH/Ni catalyst allows concentration‐dependent incorporation of olefins to give copolymers with isolated side groups and higher molecular weights, whereas the PPHH/Ni catalyst undergoes mainly stabilizing interactions with the olefins and leads to ethylene oligomers with no or marginal olefin incorporation. Pressure–time plots of the batch reactions show that the ethylene conversion is usually slower by catalysis with CCHH/Ni than by PPHH/Ni . The microstructure of the copolymers was determined by 13C NMR spectra, the number of side groups per main chain was estimated by 1H NMR analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 258–266, 2009  相似文献   

20.
A series of poly[9‐(heptadecan‐9‐yl)‐9H‐carbazole‐2,7‐diyl‐alt‐(5,6‐bis‐(octyloxy)‐4,7‐di(thiophen‐2‐yl)benzo‐[1,2,5]‐thia‐diazole)‐5,5‐diyl] compositions containing various ratios of 3,6‐carbazole was synthesized for testing in a polymer solar cell. An appropriate amount of 3,6‐carbazole units incorporated into the copolymer improved intermolecular charge transport, whereas excess amount of 3,6‐carbazole units temporarily seized on the partial negative charge generated in the conjugation breaks. We extensively studied the effects of the incorporated 3,6‐carbazole units on the intermolecular interactions, which can affect nongeminated recombination in bulk heterojunction‐polymer solar cells. These properties were investigated using photocurrent‐ and light intensity‐dependent measurements and electrochemical impedance spectroscopy. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2047–2056  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号