首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Slabs of low-density polyethylene (LDPE) were exposed to the wake of a lean hydrogen-oxygen flat flame. The ignition delay and initial flame velocity after the ignition were measured at several gas-air equivalence ratios and distances from the igniting flame. When ignition occurred, the surface temperature was far lower than that required for pyrolysis in the absence of oxygen. Small amounts of char formed on the polymer surface during the delay, consistent with the involvement of oxygen in solid-phase preignition processes. Plots of In(delay) versus 1/(absolute temperature) were linear and the activation energy was derived from the Arrhenius equation, 64 ± 10 kJ/mol. Initial rates of flame development decreased with increased separation between the polymer and the igniting flame, but unlike those reported for poly(methyl methacrylate), they were independent of the duration of the preceding delay except when the polymer was very close to the flame. The results are explained by a model in which both the ignition delay and the subsequent rate of flame development depend on the concentration of species associated with the chain-propagation steps of the combustion process.  相似文献   

2.
When exposed to a lean hydrogen-oxygen flat flame, slabs of poly(methyl methacrylate) ignited to flaming combustion after a delay, the length of which depended on the gas temperature and the separation between the slab and the igniting flame. The delay obeyed an Arrhenius-type expression, giving an activation energy of 96 ± 8 kJ mol?1. By the end of the delay the surface of the sample was pitted if the delay was long and almost unchanged if the delay was short. The rates of flame development measured immediately after the ignition were proportional to the ignition delay, the proportionality constant varying with the separation between slab and flame. These rates decreased as temperature increased; the slope of the linear Arrhenius plots was independent of slab-flame separation. During the delay, carbon dioxide was formed within the boundry layer and a blue preignition glow was visible at its outer edge. These data were explained by a model in which ignition delay is governed by the induction period of gas-phase reactions in or near the boundry layer. Models in which delay is governed by the time taken to heat the polymer to a critical ignition temperature did not satisfactorily explain the data.  相似文献   

3.

Using nanofiller additives in the polymer matrix to form nanocomposites is a potential way of reducing the flame spread and enhancing flame retardancy of polymeric materials during fire. To understand the fire reaction properties and the relative performance of flame-retardant additives in polymer during well-developed fire, neat polystyrene, polystyrene–silica and polystyrene–nanoclay (MMT) have been tested in a cone calorimeter. The neat polystyrene and the polystyrene nanocomposites have been prepared via an in situ polymerization method. An external heat flux of 50 kW m?2 was applied in the test, and parameters such as heat release rate, peak heat release rate, time to ignition, smoke toxicity, CO and CO2 yield have been investigated. Both neat polystyrene and polystyrene nanocomposites have shown the trend of a thermally thick charring polymer in the heat release rate over time data. The nanocomposites had an overall better flame retardancy than the neat polystyrene in terms of lower peak heat release rate, lower average mass loss rate and enhanced char formation. The nanocomposites had also reduced smoke emission with lower CO and CO2 yield compared to the neat polystyrene. The overall flame retardancy was enhanced as the nanofiller loading was increased for both the nanosilica and MMT nanocomposites.

  相似文献   

4.
Acoustic absorption and adiabatic compressibility measurements are reported on solutions of polystyrene (Mn = 89,000) in toluene and cyclohexane. The data in toluene cover a temperature range from 293 to 343°K and a concentration range of 10–400 Kg m?3 (1–40 wt%). The dependence of acoustic absorption on concentration was found to be linear up to 100 kg m?3, which corresponds to the concentration at which polymer–polymer interactions cause significant changes in the specific viscosity-concentration relationship. Up to 200 kg m?3 the data could be fitted to computations based on an artificial separation of the dispersion into contributions from viscoelastic and segmental processes, using parameters obtained from a study of narrow molecular weight distribution samples at 25 kg m?3. However, neither approach was capable of describing dispersions in the 300, 400 kg m?3 solutions. The modification of the relaxation spectrum observed at the highest concentrations is ascribed to volume and entropy changes associated with alterations of the local environment around a segment of the polymer chain. These changes have their origin in interchain penetration and polymer–polymer contacts, and indicate that ‘entanglement’ is primarily entropic in effect. The adiabatic compressibility exhibited similar deviations from a simple concentration dependence, and allowed estimation of an incompressible volume increment associated with polymer–polymer interactions in the high-concentration entangled matrix. However, the adiabatic compressibilities of solutions of polystyrene, 10–15 kg m?3, in cyclohexane showed no deviations from simple behavior in the region of the theta temperature. Measurements of the adiabatic compressibility of polystyrene in mixtures of cyclohexane-toluene have been used to obtain the relative magnitude of solvent and polymer contributions to the excess compressibility.  相似文献   

5.
A diamine‐based benzoxazine monomer (Bz) and a liquid crystalline epoxy monomer (LCE) are synthesized, respectively. Subsequently, a benzoxazine‐epoxy interpenetrating polymer network (PBEI) containing liquid crystalline structures is obtained by sequential curing of the LCE and the Bz in the presence of imidazole. The results show that the preferential curing of LCE plays a key role in the formation mechanism of liquid crystalline phase. Due to the introduction of liquid crystalline structures, the thermal conductivity of PBEI increases with increasing content of LCE. When the content of LCE is 80 wt %, the thermal conductivity reaches 0.32 W m?1 K?1. Additionally, the heat‐resistance of PBEI is superior to liquid crystalline epoxy resin. Among them, PBEI55 containing equal weight of Bz and LCE has better comprehensive performance. Its thermal conductivity, glass transition temperature, and the 5 % weight loss temperature are 0.28 W m?1 K?1, 160 °C, and 339 °C, respectively. By introducing boron nitride (BN) fillers into PBEI55, a composite of PBEI/BN with the highest thermal conductivity of 3.00 W m?1 K?1 is obtained. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1813–1821  相似文献   

6.
In this paper, we present a study on the surface modification of polyethyleneterephthalate (PET) polymer by plasma treatment. The samples were treated by nitrogen and oxygen plasma for different time periods between 3 and 90 s. The plasma was created by a radio frequency (RF) generator. The gas pressure was fixed at 75 Pa and the discharge power was set to 200 W. The samples were treated in the glow region, where the electrons temperature was about 4 eV, the positive ions density was about 2 × 1015 m?3, and the neutral atom density was about 4 × 1021 m?3 for oxygen and 1 × 1021 m?3 for nitrogen. The changes in surface morphology were observed by using atomic force microscopy (AFM). Surface wettability was determined by water contact angle measurements while the chemical composition of the surface was analyzed using XPS. The stability of functional groups on the polymer surface treated with plasma was monitored by XPS and wettability measurements in different time intervals. The oxygen‐plasma‐treated samples showed much more pronounced changes in the surface topography compared to those treated by nitrogen plasma. The contact angle of a water drop decreased from 75° for the untreated sample to 20° for oxygen and 25° for nitrogen‐plasma‐treated samples for 3 s. It kept decreasing with treatment time for both plasmas and reached about 10° for nitrogen plasma after 1 min of plasma treatment. For oxygen plasma, however, the contact angle kept decreasing even after a minute of plasma treatment and eventually fell below a few degrees. We found that the water contact angle increased linearly with the O/C ratio or N/C ratio in the case of oxygen or nitrogen plasma, respectively. Ageing effects of the plasma‐treated surface were more pronounced in the first 3 days; however, the surface hydrophilicity was rather stable later. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.

Rigid polyurethane foam/aluminum diethylphosphinate (RUPF/ADP) composites were prepared by one-step water-blown method. Furthermore, scanning electron microscope (SEM), thermal conductivity meter, thermogravimetric analysis (TGA), limiting oxygen index, Underwriters Laboratories vertical burning test (UL-94) and microsacle combustion calorimetry were applied to investigate thermal conductivity, thermal stability, flame retardancy and combustion behavior of RPUF/ADP composites. Thermogravimetric analysis–Fourier transform infrared spectroscopy (TG–FTIR) was introduced to investigate gaseous products in degradation process of RPUF/ADP composites, while SEM and X-ray photoelectron spectroscopy were used to research char residue of the composites. It was confirmed that RPUF/ADP composites presented well cell structure with density of 53.1–59.0 kg m?3 and thermal conductivity of 0.0425–0.0468 W m?1 K?1, indicating excellent insulation performance of the composites. Flame retardant test showed that ADP significantly enhanced flame retardancy of RPUF/ADP composites, RPUF/ADP30 passed UL-94 V-1 rating with LOI of 23.0 vol%. MCC test showed that ADP could significantly decrease peak of heat release rate (PHPR) of RPUF/ADP composites. PHPR value of RPUF/ADP20 was decreased to 158 W g?1, which was 21.8% reduced compared with that of pure RPUF. TG–FTIR test revealed that the addition of ADP promoted the release of CO2, hydrocarbons and isocyanate compound in first-step degradation of RPUF matrix while inhibited the release of CO in second step degradation. Char residue analysis showed that the addition of ADP promoted polyurethane molecular chain to form aromatic and aromatic heterocyclic structure, enhancing strength and compactness of the char. This work associated a gas–solid flame retardancy mechanism with the incorporation of ADP, which presented an effective strategy for preparation of flame retardant RPUF composites.

  相似文献   

8.
The unsaturated polyester resins (UPR) were usually applied in electronic equipment, but the intrinsic flammability severely retrained their application. A mono‐component flame retardant poly (piperazine methylphosphonic acid neopentylglycol ester) (PPMPNG) made in our lab was selected and applied to improve their flame retardant performance. The UPR thermosets achieved UL‐94 V‐0 grade during vertical burning tests and the limiting oxygen index was as high as 32.1% when 15 wt% PPMPNG was incorporated. PPMPNG promoted the decomposition and carbonization of UPR materials in advance during heating process, and the residual mass was effectively enhanced at high temperature. The flame retardant mechanism of UPR/PPMPNG thermosets was investigated by pyrolysis‐gas chromatography/mass spectrometry tests, and the measurement of the morphologies and chemical components of the char residue. The phosphine oxygen radical was generated and then quenched the active free radicals in gas phase. Moreover, the av‐EHC of FR‐UPR was declined from 15.8 MJ kg?1 of pure UPR to 8 9 MJ kg?1 corresponding a reduction of 43.6%, which also verified the flame retardant effect in gas phase. The compact, integrated, and graphitized char layer was produced on materials surface and then exerted excellent barrier effect in condensed phase. Thus, the UPR/PPMPNG composites were conferred superior flame retardant properties.  相似文献   

9.
Combustion is often difficult to spatially direct or tune associated kinetics—hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A ‘surface-then-core’ order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non-flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside-out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm- and μm-diameter tubes from appropriately sized fibers.  相似文献   

10.
The thermal and fire properties of polystyrene (PS) flame retarded by a system composed of ammonium polyphosphate (APP) and wollastonite (W) were investigated by thermogravimetric analysis, pyrolysis‐combustion flow calorimeter, pyrolysis gas chromatography mass spectrometry, cone calorimetry and epiradiator. The combustion residues were observed by scanning electron microscopy/energy dispersive X‐ray spectroscopy and analyzed by X‐ray diffraction. The combination of both additives enables increasing the thermal stability of PS while increasing simultaneously the high temperature residue. The peak of HRR was also significantly reduced while time to ignition varied depending on the composition. It was shown that the degradation pathway of PS was affected by the presence of the additives implying a reduction of the effective heat of combustion. In the condensed phase, APP decomposition promotes char formation and favors the reactivity between phosphorus and silicate. A layer composed of char, W and a mixture of calcium and silicon phosphate is formed at the sample surface during combustion. This layer is cohesive enough to limit the release of combustible gases to the gas phase. Moreover, the thermally stable protective layer reaches high temperature enabling the re‐irradiation of a part of the incident heat flux. The flame retardancy of PS is thus enhanced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.

The factors affecting the ignition temperatures of two low-rank coals were experimentally studied using thermogravimetric analysis. The experiments were conducted with coal powders of four different particle size distributions. The thermogravimetric analyzer was operated at three heating rates, 10, 20, and 30 °C min?1 and four oxygen concentrations of 3, 6, 9, and 12%. The results showed that the ignition temperature decreased by about 25 °C as the oxygen concentration increased from 3% to 12%. The standard deviation of the activation energy was 16.75% at a conversion degree of less than 0.4, and it decreased to 1.35% at the end of the combustion process. At a heating rate of 10 °C min?1, the ignition temperature increased by about 8 °C as the coal particle size increased by 100 μm. At a heating rate of 30 °C min?1, the effect of the particle size on the ignition temperature was enhanced and the ignition temperature increased to 15 °C.

  相似文献   

12.
The presented article deals with the assessment of combined impact of temperature and flow of oxidising atmosphere, its oxygen concentration and heat flux on the ignition time of isotactic polypropylene (PP). The ignition time was determined in a specially adapted hot air Setchkin furnace at temperatures (450 and 600?°C), density of heat flux (12.4 and?26.4?kW m?2), flows of oxidation mixture (6 and 8?L?min?1) and volume oxygen concentrations (3, 9, 15, 21, 27, 33, 39, 45 and 50?%). Obtained data allows us to assume that the temperature influence on PP induction period of ignition increases with decreasing flow rate of oxidising atmosphere. At the flow of oxidising mixture equal to 6?L?min?1 and temperature of 600?°C, oxygen concentration had only a negligible impact on the the induction period of ignition in the analysed period. From the presented results, the induction period of ignition depends on the temperature and also on the flow rate of oxidising mixture and oxygen concentration in it. In addition, heat flux has a significant influence on the induction period. However, the quantification of the heat flux influence was not possible with the applied experimental device.  相似文献   

13.
We have determined the nature of the combustible gas produced from oxidizing pyrolysis of a polymer (the bromide of poly(vinyl-4-pyridinium) and the bromide of poly(N(3-propionyl)4-vinylpyridinium)). The pyrolysis temperature chosen was just below the self ignition temperature and the pyrolysis was performed in air at atmospheric pressure. We analysed the gaseous products by gas chromatography and mass spectrometry. We found a correlation between the change of the self ignition temperature, the change of the composition of the gas phase and the change of the percentage of residue. We assumed that the gas mixture originates the self ignition of the polymer. The composition of the gas mixture depends on the composition of the polymer.  相似文献   

14.
The electrical conductivity, thermoelectric power, and dielectric properties of polyaniline doped by boric acid (PANI‐B) have been investigated. The room temperature electrical conductivity of PANI‐B was found to be 1.02 × 10?4 S cm?1. The thermoelectric power factor for the polymer was found to be 0.64 µW m?1 K?2. The optical band gap of the PANI‐B was determined by optical absorption method, and the PANI‐B has a direct optical band gap of 3.71 eV. The alternating charge transport mechanism of the polymer is based on the correlated barrier hopping (CBH) model. The imaginary part of the dielectric modulus for the PANI‐B suggests a temperature dependent dielectric relaxation mechanism. Electrical conductivity and thermoelectric power results indicate that the PANI‐B is an organic semiconductor with thermally activated conduction mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The degree of oxidation of conducting polymers has great influence on their thermoelectric properties. Free‐standing poly(3‐methylthiophene) (P3MeT) films were prepared by electrochemical polymerization in boron trifluoride diethyl etherate, and the fresh films were treated electrochemically with a solution of propylene carbonate/lithium perchlorate as mediator. The conductivity of the resultant P3MeT films depends on the doping level, which is controlled by a constant potential from ?0.5 to 1.4 V. The optimum electrical conductivity (78.9 S cm?1 at 0.5 V) and a significant increase in the Seebeck coefficient (64.3 μV K?1 at ?0.5 V) are important for achieving an optimum power factor at an optimal potential. The power factor of electrochemically treated P3MeT films reached its maximum value of 4.03 μW m?1 K?2 at 0.5 V. Moreover, after two months, it still exhibited a value of 3.75 μW m?1 K?2, and thus was more stable than pristine P3MeT due to exchange of doping ions in films under ambient conditions. This electrochemical treatment is a significant alternative method for optimizing the thermoelectric power factor of conducting polymer films.  相似文献   

16.

Flammability studies are conducted to evaluate the behavior of materials exposed to fire. In this study, microscale combustion calorimetry (MCC) and cone calorimetry methods were applied to acquire the flammability characteristics of red and grey extruded polystyrene (XPS) samples. To understand the effect of changes between parameters, Pearson’s correlation coefficient was used to examine their linear relationships. From the research, moderate and weak correlations were recorded between the total heat release rates from both methods for red and grey XPS, respectively. Plotting peak heat release rate against heat release temperature for MCC and ignition temperature for cone test showed that 25, 35 and 50 kW m?2 incident heat fluxes of the cone test fall within 0.2 K s?1 and 0.5 K s?1 heating rates of MCC. Also, all the MCC parameters except char yield and total heat release presented good correlations with the cone calorimetry flammability characteristics. Hence, MCC could be used in conjunction with cone calorimetry to accurately and reliably assess the flammability of materials.

  相似文献   

17.
The apparent specific heat of coal was measured by employing a computational calorimetric technique during continuous pyrolysis at heating rates of 10, 25 and 100°C min-1. For all of the examined heating rates, the apparent specific heat was found to be approximately 1.4 kJ kg-1 K-1 at room temperature. When the sample reached decomposition temperature (~410°C), the specific heat increased to 1.9 kJ kg-1 K-1. From this point, the apparent specific heat was greatly influenced by the coal reaction mechanism. For this purpose a detailed gas analysis was carried out for the three examined heating rates. It was found that with increased heating rates, the devolatilisation reactions were shifted to higher temperatures, as reflected in the measured apparent specific heat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
To reduce both the cost and the environmental impact of copper‐based thermal solar absorbers, we have investigated their possible substitution by bio‐based conductive polymer nanocomposite (CPC) elements. Our results show that carbon nanotubes (CNT) have no significant influence on polymers’ calorimetric properties such as Tm and Tg but lead to a strong increase in crystallinity of poly(lactic acid) (PLA) and to a lesser extent of poly(amide 12) poly(amide 12) (PA12) for 2 and 3 CNT wt % respectively. Percolation thresholds as low as 0.5 and 0.58 were obtained for PA12 and PLA, respectively, and visco‐elastic properties such as η*, G’ and G” were found to increase exponentially with CNT content confirming the formation of a CNT network within the matrix. All CPC are absorbing more energy in the visible and infrared than in the ultraviolet wavelength ranges. Finally, the thermal conductivity k of PLA–CNT and PA12–CNT were increased, respectively, of 85% and 24%, to reach 0.28 W.m?1.K?1 and 0.26 W.m?1.K?1, for only 5 wt% CNT. The figure of merit suggests that PA12 is the polymer which satisfies at best all criteria, particularly combining a lower viscosity at almost equivalent thermal conductivity and absorptivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Thermal comfort is condition of an organism, when there is no sweating and the mean skin temperature is in the range from 32 to 34?°C (Hes, Measurement of comfort, What can textile III, 2009). Thermal comfort is closely connected with the following characteristics: thermal resistivity and thermal conductivity. Related properties are: resistance against the penetration of water vapor, air permeability, and porosity. The thermal resistivity R (W?1?K?m2) and thermal conductivity K (W?K?1?m?1) of knitted fabrics containing PP fiber were measured. Measurements were realized on three different types of devices. The experimental results were compared with simple mechanistic model for prediction of thermal conductivity K for textile structures.  相似文献   

20.
Selective CO oxidation in a mixture simulating the methanol steam reforming product with an air admixture was studied over Ru/Al2O3 catalysts in a quasi-adiabatic reactor. On-line monitoring of the gas temperature in the catalyst bed and of the residual CO concentration at different reaction conditions made it possible to observe the ignition and quenching of the catalyst surface, including transitional regimes. A sharp decrease in the residual CO concentration takes place when the reaction passes to the ignition regime. The evolution of the temperature distribution in the catalyst bed in the ignition regime and the specific features of the steady-state and transitional regimes are considered, including the effect of the sample history. In selective CO oxidation and in H2 oxidation in the absence of CO, the catalyst is deactivated slowly because of ruthenium oxidation. In both reactions, the deactivated catalyst can be reactivated by short-term treatment with hydrogen. A 0.1% Ru/Al2O3 catalyst is suggested. In the surface ignition regime, this catalyst can reduce the residual CO concentration from 0.8 vol % to 10–15 ppm at O2/CO = 1 even in the presence of H2O and CO2 (up to ~20 vol %) at a volumetric flow rate of ~100 1 (g Cat)?1 h?1, which is one magnitude higher than the flow rates reported for this process in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号