首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of 1,2-Bis(trimethylsilyl)imines with Selenium and Tellurium Halogenides The reactions of benzil-bis(trimethylsily)imine and phenanthrene-9,10-bis(trimethylsilyl)imine with SeOCl2, SeCl4 and TeCl4 are described.  相似文献   

2.
Reactions of Zinc and Cadmium Halides with Tris(trimethylsilyl)phosphane and Tris(trimethylsilyl)arsane ZnCl2 reacts with E(SiMe3)3 (E = P, As) in toluene in the presence of PnPr3 to give the binuclear complexes [Zn2Cl2{E(SiMe3)2}2(PnPr3)2] · C7H8 (E = P 1 , As 2 ). Therefore by the use of PiPr3 clusters consisting of ten metal atoms are obtained, [Zn10Cl12(ESiMe3)4(PiPr3)4] (E = P 3 , As 4 ). As a result of the reaction of CdBr2 with P(SiMe3)3 the compound [CdBr2{P(SiMe3)3}]2 ( 5 ) can be isolated at –40 °C. In the presence of PnPr3 CdBr2 reacts with P(SiMe3)3 forming the binuclear complex [Cd2Br2{P(SiMe3)2}2(PnPr3)2] · thf ( 6 ). The same reaction with PiPr3 yields to the cluster [Cd10Br12(PSiMe3)4{P(SiMe3)3}4] · 2 C7H8 ( 7 ). ZnI2 and CdI2 react with As(SiMe3)3 to yield the complexes [MI2{As(SiMe3)3}]2 (M = Zn 8 , Cd 9 ). In the case of CdI2 additionally the cluster [Cd10I12(AsSiMe3)4 · {As(SiMe3)3}4] · 4,5 C7H8 ( 10 ) is formed which is analogous to the compounds 3 , 4 and 7 . In the presence of [PnBu4]I 8  reacts in THF to give the ionic compound [PnBu4]2[Zn6I6(AsSiMe3)4(thf)2] · C6H6 ( 11 ).  相似文献   

3.
Reactions of Fluorophosphoranes with the N,O-Bis(trimethylsilyl) Derivative of o-Aminophenol The reaction of the N,O-bis(trimethylsilyl) derivative of o-aminophenol, 5 , with the tetrafluorophosphoranes, RPF4, 2a–2d , (R = F, Me, Ph, and 1-adamantyl) in a 1:1 molar ratio led to monocyclic-1,3,2λ5-4,5-benzoxazaphospholes, C6H4(O)(NH)PF2R, 6a–6d . 19F n.m.r. spectroscopic studies suggest a trigonal-bipyramidal structure with the C6H4(O)(NH) grouping attached to one axial and one equatorial position at five-coordinate phosphorus for these compounds. The spirophosphoranes, [C6H4(O)(NH)]2PR, 8a – 8d (R = F, Me, Ph, 1-adamantyl) were obtained from the reaction of the appropriate tetrafluorophosphorane, RPF4, 2a – 2d with 5 in a 1:2 molar ratio. The compounds 8a – 8d also result from a spontaneous scrambling reaction of 6a – 6d , with the corresponding tetrafluorophosphoranes, RPF4 ( 2a – 2d ) as the other product. Reaction of the difluorophosphorane, Bu3nPF2 with 5 and with N,N′-dimethyl-N,N′-bis(trimethylsilyl)urea furnished the cyclic, fluorine-free phosphoranes, 9 and 10 , respectively. The phosphonium bromide, Bu3nPFBr, reacted with 5 in a 1:1 and a 2:1 molar ratio to produce the ionic compounds, [C6H4(OSiMe3)(NHPBu3n)]+Br?, 11 , and [C6H4(OPBu3n)HNPBu3n]2+ 2 Br?, 12 , respectively.  相似文献   

4.
Reactions of TaCl5, MoCl5, and WCl6 with Bis(trimethylsilyl)carbodiimide When TaCl5 reacts with Me3SiNCNSiMe3 (Me = CH3) in a 1:1 molar ratio, 1 mol Me3SiCl and dimeric [Cl4TaNCNSiMe3]2 is formed. The vibrational spectra (IR and Raman) show a planar structure of approximate C2h symmetry. Polymeric [Cl4WNCN]n is formed by the reaction of WCl6 and Me3SiNCNSiMe3, but 2 mol Me3SiCl result in this 1:1 molar interaction. On the other hand MoCl5 and Bis(trimethylsilyl)carbodiimide (molar ratio 2:1) forms polymeric [(Cl4Mo)2NCN]n, a compound with Mo? N? Mo and Mo—(Cl2)—Mo bridges. The IR spectra of these carbodiimide derivatives are used for structural suggestions.  相似文献   

5.
6.
The reaction of fluorosilanes with lithium salts of bulky amines like tetramethyl-piperidine and di-tert. butylamine leads to stable aminofluorosilanes of the type R-SiF2-NRR [R=F, C(CH3)3, C6H5, C6H4N(CH3)2]. Lithium salts of silylamines react analogously: R2Si(NR-SiF2R)2 (R=R= =CH3, R=C6H5). An eight membered Si–N-ring is obtained in the reaction of a disubstituted silylaminofluorosilane with the dilithium salt of a silylamine. The mass-,1H-, and19F-NMR spectra of the above mentioned compounds are reported.  相似文献   

7.
8.
9.
10.
Reactions of Undecacarbonyl(acetonitrile)triiron with Alkyne Ethers (CO)11(CH3CN) 1 reacts with the alkyne ethers H3C? C?C? OC2H5 2a , H? C?C? OC2H5 2b , H3C? O? CH2? C?C? CH2? O? CH3, 2c and H3C? O? C(CH3)H? C?C? C(CH3)H? O? CH3 2d forming different cluster products depending on the substituents and the reaction conditions. The product obtained with 2a is the bisalkylidyne cluster Fe3(CO)9(m?3-C? CH3)(m?3-C? OC2H5) 3 which results from the cleavage of the carbon carbon triple bond. The alkyne 2b however yields the vinylidene cluster Fe3(CO)10(m?32-C? C(H)OC2H5) 4 by 1,2 proton shift. The alkyne clusters Fe3(CO)10(m?32-C? C(H)OC2H5) 4 by 1,2 proton shift. The alkyne clusters Fe3(CO)10(m?32- H3 C? O? CH2? C?C? CH2? O? CH3) 6 and Fe3(CO)9(m?-η2-H3C? O? CH2? C?C? CH2? O? CH3) 7 are the isolated products obtained from 2c . Thermolysis of 7 results in the formation of the dinuclear butatrien complex Fe2(CO)6 (H2C? C? C? CH2) 8a . The analogous compound Fe2(CO)6[H(H3C)C ? C ? C ? C(CH3)H] 8b is the only product of 2d and 1 . The structures of 4, 5 , and 6 have been determined by crystal structure determinations.  相似文献   

11.
Interaction of Borontrihalides and Tris-(trimethylsilyl)-amine According to the reaction conditions and the used halides borontrihalides BX3 (X = F, Cl, Br) and tris-(trimethylsily1)-amine, (Me3Si)3N, I, (Me ? CH3—) interact to give MeBX2, (Me3Si)2N? BMeX, (Me3Si)2N? BX2 or mixtures of these compounds; e. g. BF3, and I yield (Me3Si)2N? BF2 and Me3SiF, while BBr3 and I at 23°C form MeBBr2 and (Me3Si)2NSiMe2Br. In addition the unknown aminoboranes (Me3Si)2N? BMe2 and (Me3Si)2N? BMeBr were synthesized using a different route.  相似文献   

12.
13.
Reactions of bis(diethylamino) and dimorpholinosulfane with [Cu(H2O)6](ClO4)2 in acetonitrile and with CuCl2·2H2O in ethanol yield Cu(I) compounds and SO2. The reaction product of dimorpholinosulfane and CuCl2 in ethanol is OC4H8NSOC2H5. The reactions are discussed.  相似文献   

14.
15.
The present paper deals with the behaviour of various alkyliodides towards J(OCOCF3)3 bearing a suitable functional group which can serve as an internal nucleophile. All the products found1–8 can be explained without any doubt by a typical neighbouring group effect with the bis-trifluoroacetoxyiodine anion, J(OCOCF3)2 , as an easily displaced leaving group.

F. Cech undE. Zbiral, Tetrahedron31, 605 (1975).  相似文献   

16.
Lithium salts of hydrazines react with fluorosilanes under formation of fluorosilylhydrazines and LiF. Five membered rings are obtained in the reaction of bis(fluorosilyl)-hydrazines with lithiated amines. The mass,1H-and19F-nmr spectra of the compounds are reported.
  相似文献   

17.
18.
Reactions of Mixed Ligand Complexes of Nickel(0) with Carbon Dichalcogenides Decisive for the occurrence of a reaction between mixed ligand complexes of nickel(0) and carbon dichalcogenides is the HOMO-energy of the complex and the LUMO-energy of the reagent, which are reflected in the corresponding polarographic half-wave potentials. Therefore, (dipy)-Ni(COD) is substituted by SeCS, CS2 and SCO, whereas (PPh3)2Ni(C2H4) only reacts with CS2, but not with SCO. Substitution by CO2 needs substrates like Ni(PCy3)3 or Ni(PEt3)4 which have the lowest anodic waves. (PCy3)2Ni(C2H4) and (dipy)Ni(PPh3)2 effect C?S-bond breaking in SCO, and mixed carbonyls, such as (PCy3)2Ni(CO)2 or (PPh3)2Ni(CO)2, are formed. Futher products are dithiocarbonates or oligonuclear nickel sulfides which are stabilized by a phosphine. Another oligonuclear complex, (PPh3)2Ni3(CS2)2, is formed by the reaction of CS2 with surplus (PPh3)2Ni(C2H4). The function of CS2 is that of a bridging ligand. The carbon dichalcogenides are side-on (η2) coordinated in compounds like (dipy)Ni(CS2), (PPh3)Ni(CS2) and (dipy)Ni(SCO). It is always the highest electronegative heteroatom of the non symmetric ligands SeCS and SCO which does not interact with the central atom.  相似文献   

19.
Photochemical Reactions of Cyclopentadienylbis(ethene)rhodium with Benzene Derivatives During UV irradiation of [CpRh(C2H4)2] ( 1 ) (Cp = η5‐C5H5) in hexane in the presence of hexamethylbenzene the di‐ and trinuclear arene bridged complexes [(CpRh)2(μ‐η3 : η3‐C6Me6)] ( 3 ) and [(CpRh)33‐η2 : η2 : η2‐C6Me6)] ( 4 ) are formed besides known [CpRh(η4‐C6Me6)] ( 2 ). It was shown by a separate experiment that 3 besides small amounts of 4 is formed by attack of photochemically from 1 arising CpRh fragments at the free double bond of the η4‐bonded benzene ring in 2 . Irradiation of 1 in the presence of diphenyl (C12H10) affords the compounds [(CpRh)2(μ‐η3 : η3‐C12H10)] ( 5 ) and [(CpRh)33‐η2 : η2 : η2‐C12H10)] ( 6 ) as analogues of 3 and 4 , in the presence of triptycene (C20H14) only [(CpRh)2(μ‐η3 : η3‐C20H14)] ( 7 ) is obtained; the bridging in 5 , 6 , and 7 always occurs via the same six‐membered ring of the corresponding ligand system. During the photochemical reaction of 1 in the presence of styrene (C8H8) substitution of the ethene ligands by the vinyl groups with formation of [CpRh(C2H4)(η2‐C8H8)] ( 8 ) and known [CpRh(η2‐C8H8)2] ( 9 ) is observed exclusively. The new complexes were characterized analytically and spectroscopically, in the case of 3 also by X‐ray structure analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号