首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenidostannates with [SnAs] Nets Isostructural to Grey Arsenic: Synthesis and Crystal Structure of Na[Sn2As2], Na0.3Ca0.7[Sn2As2], Na0.4Sr0.6[Sn2As2], Na0.6Ba0.4[Sn2As2], and K0.3Sr0.7[Sn2As2] The metallic lustrous compounds Na[Sn2As2], Na0.3Ca0.7[Sn2As2], Na0.4Sr0.6[Sn2As2], Na0.6Ba0.4[Sn2As2] and K0.3Sr0.7[Sn2As2] were prepared from melts of mixtures of the elements. The compounds crystallize in the trigonal system (space group R3 m, No. 166, Z = 3) with lattice constants see in “Inhaltsübersicht”. The structures are isotypic to Sr[Sn2As2] containing puckered [SnAs] nets which are stacked with a sequence of six layers. The E(I)/E(II) atoms are located between each second [SnAs] layer in trigonal antiprismatic interstices formed by As atoms. In the resulting [Sn2As2] double layers the 2[SnAs] nets are stacked in such a way that additional Sn—Sn contacts arise.  相似文献   

2.
Preparation and Crystal Structure of Ethylenediammonium Selenostannates(IV) and [2 SnSe2 · en]∞ The selenostannates(IV) [enH2]2[Sn2Se6] · en 1 and [enH2][Sn3Se7] · 1/2en 2 have been prepared by the methanolothermal reaction of SnSe2 with ethylenediamine (en) (160°C, 13 bar) in the presence of respectively Se or BaSe. The [Sn2Se6]4? anion in 1 consists of two edgebridged SnSe4 tetrahedra and displays crystallographic Ci symmetry. The crystal structure of 2 contains polyselenostannate(IV) sheet anions [Sn2Se72], for which the basic elements are trigonal SnSe5 bipyramids. Each of the three symmetry independent Sn atoms is linked to the other Sn atoms via Sn? Se? Sn bridges leading to the formation of Sn3Se10 units. Methanolothermal reaction of SnSe2 with en alone yields the edge-bridged chain structure [2 SnSe2 en]∞ 3 , in which each of the Sn atoms is bonded to four Se atoms. Every second Sn atom is also coordinated by an en molecule and displays, therefore, an octahedral geometry. The remaining Sn atoms are coordinated tetrahedrally by Se atoms.  相似文献   

3.
Open sheet and framework structures [CuX{cyclo-(MeAsO)4}] (X=Cl, Br, I) 1 – 3 and [Cu3X3{cyclo-(MeAsO)4}2] (X=Cl, Br) 4 and 5 may be prepared by self-assembly from CuX and methylcycloarsoxane (MeAsO)n in acetonitrile solution. 1 – 3 exhibit 44 nets in which (CuX)2 units are connected through μ-1 KAs1 : 2 KAs3 coordinated (MeAsO)4 ligands into large 28-membered rings. In contrast, adjacent [CuX] chains in 4 and 5 are connected into sheets by μ4-K4 As coordinated (MeAsO)4 building blocks, with μ-1 KAs1 : 2 KAs3 bridging of these layers by independent (MeAsO)4 cyclotetramers leading to the generation of a porous framework structure. 1 – 5 were characterised by X-ray structural analysis.  相似文献   

4.
The Crystal Structure of the Basic Dimercury (I) Nitrates. I. The Crystal Structure of Hg2OH(NO3) · Hg2(NO3)2 The unit cell of Hg2OH(NO3) · Hg2(NO3)2 is orthorhombic, space group Cc2a - standard setting Aba2 (C) — with a = 2017.1(5) pm, b = 935.8(3) pm, c = 1121.7(3) pm and contains 8 formula units. Characteristic are chains [Hg2OH(Hg2)2/2]3+ parallel [001]. These are interconnected to a three-dimensional network by nitrate ions coordinated to mercury. The structure achieves additional stabilization through weak hydrogen bonds between oxygen atoms of the hydroxy groups and neighbouring nitrate ions. The bonding relationship of one hydrogen atom to four tetrahedrally correlated oxygen atoms is discussed.  相似文献   

5.
The reaction of W6Br12, NaBr, and WO2Br2 in the presence of Br2 in a sealed silica tube yields Na[W2O2Br6] together with WOBr4 and WO2Br2 in the low temperature zone (temperature gradient 1030/870 K). Na[W2O2Br6] crystallizes orthorhombically in the space group Immm (no. 71) with a = 3.775 Å, b = 10.400 Å, c = 13.005 Å and Z = 2. Pairs of condensed trans-[WO2Br4] octahedra with a common Br2 edge form along [100] double chains [W2O4/2Br6]1– via the oxygen atoms. The mixed valent tungsten atoms are bonded to W2 pairs with a 2 c–3 e bond (d(W–W) = 2.946 Å, d(W–O) = 1.888 Å, d(W–Brb) = 2.537 Å, d(W–Brt) = 2.535 Å, ∢O–W–O = 177.4°, ∢Brb–W–Brb (endocyclic) = 109.0°). The Na+ cations connect the anionic double chains to form two-dimensional layers parallel (001), which interact by van der Waals forces. The cations are eightfold coordinated by a cube of the terminal Brt ligands of the polymeric anions (d(Na–Br) = 3.138 Å). Na[W2O2Br6] may be discussed as an intercalation compound of the oxide bromide WOBr3.  相似文献   

6.
K3Au5Pb: Layers of [AuAu3/2] Gold Tetrahedra and [Pb2/2] Lead Chains Silver coloured, brittle single crystals of K3Au5Pb were synthesized by reaction of potassium azide with gold sponge and lead powder at T = 920 K. The structure of the compound (space group Imma, Z = 4, a = 5.646(1) Å, b = 19.500(4) Å, c = 8.412(1) Å) was determined from X-ray single-crystal diffractometry data. The gold lead partial structure consists of layers of [AuAu3/2] tetrahedra and [Pb2/2] zigzag chains with four-bonded lead atoms which are connected to a framework structure via Au–Pb contacts. The potassium atoms occupy channels within the gold lead partial structure.  相似文献   

7.
Tetraammine Lithium Cations Stabilizing Phenylsubstituted Zintl-Anions: The Compound [Li(NH3)4]2[Sn2Ph4] Ruby-red, brittle single crystals of [Li(NH3)4]2[Sn2Ph4] were synthesized by the reaction of diphenyltin dichloride and metallic lithium in liquid ammonia at ?35°C. The structure was determined from X-ray singlecrystal diffractometer data: Space group, P1 , Z = 1, a = 9.462(2) Å, b = 9.727(2) Å, c = 11.232(2) Å, α = 66.22(3)°, β = 85.78(3)°, γ = 61.83(3)°, R1 (F ? 4σF) = 5.13%, wR2 (F02 ? 4σF) = 10.5%, N(F ? 4σF) = 779, N(Var.) = 163. The compound contains to Sb2Ph4 isosteric centres [Sn2Ph4]2? as anions which are connected to rods by lithium cations in distorted tetrahedral coordination by ammonia. These rods are arranged parallel to one another in the b,c-plane, but stacked along [100].  相似文献   

8.
Cs[Er10(C2)2]I18 and [Er10(C2)2]Br18: Two New Examples for Reduced Halides of the Lanthanides with Isolated [M10(C2)2] Clusters Cs[Er10(C2)2]I18 is obtained from the reaction of ErI3 with caesium and carbon in sealed tantalum containers at 700°C and [Er10(C2)2]Br18 through the metallothermic reduction of ErBr3 with rubidium in the presence of carbon at 750°C in sealed niobium containers. The crystal structures {Cs[Er10(C2)2]I18: triclinic, P1 ; a = 1 105.2(8) pm, b = 1 112.0(7) pm; c = 1 122.9(8) pm; α = 66.91(3)°, β = 87.14(3)°; γ = 60.80(3)°; Z = 1; R = 0.049, Rw = 0.043; [Er10(C2)2]Br18: monoclinic, P21/n, a = 971.8(6) pm, b = 1 623.4(9) pm, c = 1 163.8(6) pm, β = 104.00(6)°; Z = 2; R = 0.077, Rw = 0.057} contain isolated dimeric [Er10(C2)2] clusters. Due to the inclusion of C2 units, the octahedra are elongated in the direction of the pseudo C4 axis. The connecting edges of the two octahedra are exceptionally short (316.7 pm and 314.8 pm respectively). The dimeric units are connected via Xi?a and Xa?i (X = Br, I) bridges according to [Er10(C2)2XX]X. Cs+ is surrounded by a cuboctahedron of iodide ions in Cs[Er10(C2)2]I18.  相似文献   

9.
Reaction of A2CO3 (A = K, Rb) with Sn and Se in an H2O/CH3OH mixture at 115–130°C affords the isotypic selenidostannates(IV) A6Sn4Se11 _. xH2O (A = K, x = 8) 1 and 2 whose discrete [Sn4Se11]6– anions each contain two corner‐bridged ditetrahedral [Sn2Se6]4– species. Similar reaction conditions with A = Cs afford Cs2Sn2Se5 _. H2O ( 3a ) and Cs2Sn2Se5 ( 3b ) in which such [Sn2Se6]4– building blocks are connected through common Se atoms into infinite [Sn2Se52–] chains. The [Sn3Se72–] ribbons of (Et4N)2Sn3Se7 ( 4 ), formed by treating (Et4N)I with Sn and Se in methanol at 130°C, can be regarded as resulting from the condensation of [Sn2Se52–] chains with molecular [SnSe4]4– anions. The anions [Sn4Se11]6–, [Sn2Se52–], and [Sn3Se72–] represent the products of individual reaction steps on the potential condensation pathway of [Sn2Se6]4– to the lamellar selenidostannates(IV) [Sn4Se92–] or [Sn3Se72–].  相似文献   

10.
19F NMR Spectroscopic Evidence and Calculation of the Statistical Formation of Mixed Cluster Anions [(Mo6Br Cl )F ]2?, n = 0 – 8 The complete system of the innersphere mixed clusters (Mo6BrCl)4+ is formed by exchange of innersphere bound Cli against outersphere bound Bra on tempering the solid [(Mo6Cl)Br] at 500°C for 16 h. After conversion with conc. HCl into (H3O)2[(Mo6BrCl)Cl] and precipitation of the outer Cla with AgBF4 in ethanol, treatment with tetrabutylammonium(TBA)fluoride yields (TBA)2 [(Mo6BrCl)F], a mixture of 22 different species. According to the sets of chemical equivalent fluorine atoms in total 55 19F nmr signals are expected, which are really observed in the high resolution 1D-19F-nmr spectrum. Using increments of chemical shifts, peak intensities and multiplet structures as well as the 2D-19F/19F-COSY spectrum the complete and unambiguous assignment of all resonances is achieved. From the measured integral intensities the distribution of the different compounds is determined, revealing statistical formation of the geometrical isomers.  相似文献   

11.
Halogen Exchange at Re3-Clusters: A New Synthetic Route to Binary and Ternary Rhenium(III) Bromides. Crystal Structures of Cs2[Re3Br11] and Cs3[Re3Br3Cl9] The substitution of “inner” ligands in transition metal clusters in aqueous HX solutions is hitherto unknown. For the first time the substitution of bridging and terminal chloride for bromide ions was observed at rhenium clusters, [Re3(μ-Cli,b)3(Cl)(Cli,t)(3?x)(H2Oi,t)x](3?x)? (x = 0–3), via the reaction of “ReCl3 · 2 H2O” in hot hydrobromic acid solution under an inert gas atmosphere. This establishes a new synthetic route to ternary Re(III) bromides as well as to ReBr3. However, ternary Re(IV) bromides, A2ReBr6 (A = Rb, Cs), are dominating in the presence of oxygen, rhenium(III) bromides are only by-products. Dark brown rods of Cs2[Re3Br11] are obtained from argon saturated, hot hydrobromic acid solutions of “ReCl3 · 2 H2O” and CsBr. The crystal structure (orthorhombic, Pnma (Nr. 62); a = 955.51(5); b = 1 610.29(10); c = 1 372.70(9); Z = 4; Vm = 318.0(2) cm3mol?1; R = 0.084, Rw = 0.058) consists of defect clusters [Re3BrBrBr□i,t]2? in which one in plane, terminal position is not occupied. The substitution of “inner” ligands has been observed in the case of chloride for bromide only, the Bri,b and Ii,b ligands in ReBr3 and ReI3, respectively, are not substituted in hydrochloric acid even at temperatures as high as 100°C. Bordeaux red square pyramids of CsReBrCl3 = Cs3[Re3(μ-Bri,b)3ClCl] are obtained from hot hydrochloric acid solutions of ReBr3 · 2/3 H2O upon evaporation. CsReBrCl3 (orthorhombic, C2cm (Nr. 40); a = 1 419.0(1); b = 1 419.2(1); c = 1 080.30(8) pm; Z = 4; Vm = 327.6(3) cm3mol?1; R = 0.033, Rw = 0.028) is isostructural to the corresponding chloride CsReCl4.  相似文献   

12.
The title cation ( = Ni2L) is formed in a variety of reactions (Schemes 1 and 2) in systems containing Ni2+ and (2-thiolatoethyl)-diphenylphosphine (= L?) in the absence of coordinating anions at Ni2+/L? ratios > 0.5 in apolar or moderately polar media. Solid [Ni2L3]CIO4 and [Ni2L3]BPh4 have been isolated. Job's plots confirm the Ni2L- stoichiometry in solution. 31P-NMR data are consistent with ≥ 97% Ni2L (vs. ? 3% of hypothetical Ni3L) at equilibrium and support the suggested configuration (Fig. 2). The equilibrium between NiL2 + NiL2Br2 and Ni2L + Br? varies with the solvent composition in CH23Cl2/EtOH mixtures. The rate of formation of Ni2L2Br2 from Ni2L and bromide (in high excess) in CH2Cl2 is first-order in [Ni2L]tot but depends on the ratio [Bu4NBr]tot/[Ni2L3 · ClO4]tot, even at a high excess of bromide. This is interpreted by efficient competition in ion-aggregate formation between the small perchlorate concentration introduced as the counterion of Ni2L, and the large excess of bromide.  相似文献   

13.
Bi4RuBr2 and Bi4RuI2: Two Varieties of a Column Structure with Face-Sharing [RuBi8/2] Square Antiprisms Reaction of the elements yields black, lustrous, air insensitive crystals of the subhalides Bi4RuI2 (tetragonal, I4/m, a = 1183.9(2) pm, c = 669.7(2) pm, V = 938.66 · 106 pm3) and Bi4RuBr2 (monoclinic, I112/m, a = 1211.9(2) pm, b = 1072.6(2) pm, c = 663.9(2) pm, γ = 91.63(1)°, V = 862.64 · 106 pm3). The structures of the homöotypic compounds contain [RuBi8/2] strands of face-sharing square antiprisms. Halogen atoms lie above the edges of alternate Bi4 squares. Thereby chemical bonding differs significantly within the two types of Bi4 squares. Though the Ru atoms on the central axis of the strand of antiprisms form pairs, extended Hückel calculations give no evidence of Ru? Ru bonds.  相似文献   

14.
The reaction of W6Br12 with CuBr sealed in an evacuated silica tube at the temperature gradient 925/915 K and annealing at 625/300 K yields a mixture of orthorhombic α-Cu2[W6Br14] and cubic β-Cu2[W6Br14] in the low temperature zone. α-Cu2[W6Br14] crystallizes in the space group Pbca (no. 61), a = 15.126 Å, b = 9.887 Å, c = 15.954 Å, Z = 4, oP88, and β-Cu2[W6Br14] crystallizes in the space group Pn3 (no. 201), a = 13.391 Å, Z = 4, cP88. The crystal structures are built up by [(W6Br)Br]2– cluster anions and Cu+ cations. The cluster anions show only in the peripheral shells small deviation from m3m symmetry (d(W–W) = 2.630 Å; d(W–Bri) = 2.618 Å; d(W–Bra) = 2.614 Å). The anions are arranged in a slightly compressed bcc pattern (α) and ccp (β) pattern, respectively. The Cu+ cations are trigonal-planar coordinated by Bra ligands with d(Cu–Br) = 2.377 Å (α) and 2.378 Å (β). The cubic β-modification is diamagnetic with an unexpected large susceptibility (χmol = –884 × 10–6 cm3 mol–1) and have a band gap of 2.8 eV. It decomposes under dynamic vacuum in two steps at 795 K und 1040 K.  相似文献   

15.
Synthesis, Crystal Structure and Spectroscopic Properties of the Cluster Anions [(Mo6Br )X ]2? with Xa = F, Cl, Br, I The tetrabutylammonium (TBA), tetraphenylphosphonium (TPP) and tetraphenylarsonium (TPAs) salts of the octa-μ3-bromo-hexahalogeno-octahedro-hexamolybdate(2?) anions [(Mo6Br)X]2? (Xa = F, Cl, Br, I) are synthesized from solutions of the free acids H2[(Mo6Br)X] · 8 H2O with Xa = Cl, Br, I. The crystal structures show systematic stretchings in the Mo? Mo bond length and a slight compression of the Bri8 cube in the Fa to Ia series. The cations do not change much. The i.r. and Raman spectra show at 10 K almost constant frequencies of the (Mo6Bri8) cluster vibrations, whereas all modes with Xa ligand contribution are characteristically shifted. The most important bands are assigned by polarization measurements and the force constants are derived from normal coordinate analysis. The 95Mo nmr signals are shifted to lower field with increasing electronegativity of the Xa ligands. The fluorine compound shows a sharp 19F nmr singlet at ?184.5 ppm.  相似文献   

16.
LaCl(BO2)2 and Er2Cl2[B2O5]: Two Chloride Oxoborates of Trivalent Lanthanides Er2Cl2[B2O5] is obtained as single crystals by the reaction of ErCl3, Er2O3 and B2O3 with an excess of ErCl3 as flux in evacuated silica tubes after two weeks at 850 °C. The compound crystallizes as long, pale pink needles and appears to be air‐ and water‐resistant. Single‐crystalline LaCl(BO2)2 emerges from the reaction of La2O3, LaCl3, and B2O3 with an excess of B2O3 as flux in evacuated silica tubes after four weeks at 900 °C. LaCl(BO2)2 crystallizes as thin, colourless, air‐ and water‐resistant needles which tend to severe twinning due to their fibrous habit. The crystal structure of Er2Cl2[B2O5] (orthorhombic, Pbam; a = 1489.65(9), b = 1004.80(6), c = 524.86(3) pm; Z = 4) contains two crystallographically different erbium cations. (Er1)3+ resides in pentagonal‐bipyramidal coordination of seven anions while (Er2)3+ is surrounded by only six anions with the shape of an octahedron. The planar oxodiborate units [B2O5]4— consisting of two vertex‐shared [BO3]3— triangles are isolated according to {([BOO]2)4—}. LaCl(BO2)2 crystallizes isostructurally with PrCl(BO2)2 in the triclinic space group P1¯ (a = 423.52(4), b = 662.16(7), c = 819.33(8) pm; α = 82.081(8), β = 89.238(9), γ = 72.109(7)°; Z = 2). The characteristic unit consists of endless chains built up by corner‐linked [BO3]3— triangles. These quasi‐planar zigzag chains of the composition {[(B1)OO(B2)OO]2—} (≡ {[BO2]} run parallel [100]. The La3+ cations exhibit coordination numbers of ten and are coordinated by three Cl and seven O2— anions.  相似文献   

17.
Synthesis and Crystal Structure of the Molecular Cluster Compound W6Br14 Brownish-black crystals of W6Br14 are formed in the direct synthesis from W6Br12 and Br2 (400 K). The compound crystallizes cubically with neutral cluster molecules ([W6Br]Br): a = 13.458 Å; Pn3 (Nr. 201); d?(W? W) = 2.653 Å; d?(W? Bri) = 2.616 Å; d?(W? Bra) = 2.569 Å. The W atoms are 0.03 Å outside of the Br cube faces. The molecules are arranged according to a cF point configuration, but each is rotated ?23° about a threefold axis in order to avoid short inter cluster distances Bra? Bra. Nevertheless, via 12 short intermolecular distances per cluster of about d(Bri …? Bra) = 3.487 Å the clusters are interconnected by forming two independent and interpenetrating 3D nets (Cu2O type). Although local distortion of the M6X cluster does not occur, as is expected for this system with 22 electrons per M6 octahedron, it is assumed that the Jahn-Teller theorem is fulfilled collectively via the low-symmetry nets of intermolecular interactions.  相似文献   

18.
Synthesis and Structure Investigations of Iodocuprates(I). XV Iodocuprate(I) with Solvated Cations: [Li(CH3CN)4] [Cu2I3] and [Mg{(CH3)2CO}6][Cu2I4] [Li(CH3CN)4][Cu2I3] 1 and [Mg((CH3)2CO)6][Cu2I4] 2 were prepared by reactions of CuI with LiI in acetonitrile and of CuI with MgI2 in acetone. 1 crystallizes orthorhombic, Pnma, a = 552.7(2), b = 1258.8(8), c = 2516(1) pm, z = 4. [Li(CH3CN)4]+ cations are located between rod packings of CuI4 tetrahedra double chains [(CuI2/2I2/4)2]? parallel to the axis. Short intermolecular anion/cation contacts were observed. The crystal structure of 2 (monoclinic, P21/n, a = 1840(2), b = 1059.2(2), c = 1879(2)pm, β = 112.94(4)°, z = 4) is built up by [Mg((CH3)2CO)6]2+ cations forming a simple hexagonal sphere packing. The binuclear anions [Cu2I4]2? occupy holes in the trigonal prismatic channels formed by the cations.  相似文献   

19.
Crystal Structure of the Basic Dimercury(I) Nitrates. III. Crystal Structure of Hg4O2(NO3)2 Hg4O2(NO3)2 crystallizes monoclinic, space group P21/a – standard setting P21/c (C) – with a = 1158.0(2), b = 666.4(1), c = 553.3(1) pm, β = 98.82(1)° and Z = 2. The structure determination from single crystal diffractometer data (AgKα, 1170 I0(hkl), numerical absorption corrections applied) resulted in a final R = 0.0512 (Rw = 0.0685). The mixed valence compound is built up of puckered layers [(HgII)2/2O(Hg)1/2]+ parallel (201). Within the layers there are exclusively covalent Hg? Hg and Hg? O bonds; whereas the linkage between the layers is achieved by weak HgI? O contacts and by nitrate ions functioning as weak bridging ligands for mercury atoms. This layer structure explains the distinct cleavage of crystals of Hg4O2(NO3)2.  相似文献   

20.
The dihydrates mentioned in the title are particularly suitable for the characterisation of the [Me6X] complex groups. Reported are the preparation of known and unknown compounds of this type. Lattice constants are given. The compounds are isotypic with the known structure of [Mo6Br8]Br4 · 2 H2O. Moreover, infrared data and the thermal decomposition of the compounds are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号