首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ligands (L) bis (2-pyridyl) methane (BPM) and 6-methyl-bis (2-pyridyl)methane (MBPM) form the three complexes CuL2+, CuL, and Cu2L2H with Cu2+. Stability constants are log K1 = 6.23 ± 0.06, log K2 = 4.83 ± 0.01, and log K (Cu2L2H + 2H2+ ? 2 CuL2+) = ?10.99 ± 0.03 for BPM and 4.56 ± 0.02, 2.64 ± 0.02, and ?11.17 ± 0.03 for MBPM, respectively. In the presence of catalytic amounts of Cu2+, the ligands are oxygenated to the corresponding ketones at room temperature and neutral pH. With BPM and 2,4,6-trimethylpyridine (TMP) as the substrate and the buffer base, respectively, the kinetics of the oxygenation can be described by the rate law with k1 = (5.9 ± 0.2) · 10?13 mol l?1 s?1, k2 = (4.0 ± 0.6) · 10?4 mol?1 ls?1, k3 = (1.1 ± 0.1) · 10?12 mol l?1 s?1, and k4 = (9 ± 2) · 10?14 mol l?1 s?1.  相似文献   

2.
The kinetics of the bromate ion-iodide ion-L-ascorbic acid clock reaction was investigated as a function of temperature and pressure using stopped-flow techniques. Kinetic results were obtained for the uncatalyzed as well as for the Mo(VI) and V(V) catalyzed reactions. While molybdenum catalyzes the BrO-I? reaction, vanadium catalyzes the direct oxidation of ascorbic acid by bromate ion. The corresponding rate laws and kinetic parameters are as follows. Uncatalyzed reaction: r2 = k2[BrO] [I?][H+]2, k2 = 38.6 ± 2.0 dm9 mol?3 s?1, ΔH? = 41.3 ± 4.2 kJmol?1, ΔS? = ?75.9 ± 11.4 Jmol?1 K?1, ΔV? = ?14.2 ± 2.9 cm3 mol?1. Molybdenum-catalyzed reaction: r2 = k2[BrO] [I?] [H+]2 + kMo[BrO] [I?] [ H+]2[M0(VI)], kMo = (2.9 ± 0.3)106 dm12 mol?4 s?1, ΔH? = 27.2 ± 2.5 kJmol?1, ΔS? = ?30.1 ± 4.5 Jmol?1K?1, ΔV? = 14.2 ± 2.1 cm3 mol?1. Vanadium-catalyzed reaction: r1 = kV[BrO] [V(V)], kV = 9.1 ± 0.6 dm3 mol?1 s?1, ΔH? = 61.4 ± 5.4 kJmol?1, ΔS? = ?20.7 ± 3.1 Jmol?1K?1, ΔV? = 5.2 ± 1.5 cm3 mol?1. On the basis of the results, mechanistic details of the BrO-I? reaction and the catalytic oxidation of ascorbic acid by BrO are elaborated. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Kinetics of the complex formation of chromium(III) with alanine in aqueous medium has been studied at 45, 50, and 55°C, pH 3.3–4.4, and μ = 1 M (KNO3). Under pseudo first-order conditions the observed rate constant (kobs) was found to follow the rate equation: Values of the rate parameters (kan, k, KIP, and K) were calculated. Activation parameters for anation rate constants, ΔH(kan) = 25 ± 1 kJ mol?1, ΔH(k) = 91 ± 3 kJ mol?1, and ΔS(kan) = ?244 ± 3 JK?1 mol?1, ΔS(k) = ?30 ± 10 JK?1 mol?1 are indicative of an (Ia) mechanism for kan and (Id) mechanism for k routes (‥substrate Cr(H2O) is involved in the k route whereas Cr(H2O)5OH2+ is involved in k′ route). Thermodynamic parameters for ion-pair formation constants are found to be ΔH°(KIP) = 12 ± 1 kJ mol?1, ΔH°(K) = ?13 ± 3 kJ mol?1 and ΔS°(KIP) = 47 ± 2 JK?1 mol?1, and ΔS°(K) = 20 ± 9 JK?1 mol?1.  相似文献   

4.
The kinetics of formation and dissociation of [V(H2O)5NCS]2+ have been studied, as a function of excess metal-ion concentration, temperature, and pressure, by the stopped-flow technique. The thermodynamic stability of the complex was also determined spectrophotometrically. The kinetic and equilibrium data were submitted to a combined analysis. The rate constants and activation parameters for the formation (f) and dissociation (r) of the complex are: k/M ?1 · S?1 = 126.4, k/s?1 = 0.82; ΔH /kJ · mol?1 = 49.1, ΔH/kJ · mol?1 = 60.6; ΔS/ J·K?1·mol?1= ?39.8, ΔSJ·K?1·mol?1 = ?43.4; ΔV/cm3·mol?1 = ?9.4, and ΔV/cm3 · mol?1 =?17.9. The equilibrium constant for the formation of the monoisothiocynato complex is K298/M ?1 = 152.9, and the enthalpy and entropy of reaction are ΔH0/kJ · mol?1 = ? 11.4 and ΔS0/J. K?1mol?1 = +3.6. The reaction volume is ΔV0/cm3· mol?1 = +8.5. The activation parameters for the complex-formation step are similar to those for the water exchange on [V(H2O)6]3+ obtained previously by NMR techniques. The activation volumes for the two processes are consistent with an associative interchange, Ia, mechanism.  相似文献   

5.
The metathesis reaction of DI with t-C4H9 generated by 351-nm photolysis of 2,2′-azoisopropane was studied in a low-pressure reactor (VLP? Knudsen cell) in the temperature range of 302–411 K. The data obeyed the following Arrhenius relation when combined with recent data by Rossi and Golden gathered by the same technique (t-C4H9 by thermal decomposition of 2,2′-azoisobutane): log k2D(M?1s?1) = 9.60 – 1.90/θ, where θ = 2.303RT kcal/mol for 302 K < T > 722 K. The metathesis reaction of HI with t-C4H9 was studied at 301 K and resulted in k2H(M?1·s?1) = (3.20 ± 0.62) × 108. An analogous Arrhenius relation was calculated for the protiated system if the small primary isotope effect k2H/k2D was assumed to be √2 at 700 K. It was of the following form: log k2H(M?1·s?1) = 9.73 – 1.68/θ. Preliminary data of Bracey and Walsh indicate that earlier Arrhenius parameters determined for the reverse reaction are somewhat in error. Their value of log k1(M?1·s?1) = 11.5 – 23.8/θ yields 7delta;Hf,3000(t-butyl) = 9.2 kcal/mol and S3000(t-butyl) = 74.2 cal/mol7°K when taken in conjuction with this study.  相似文献   

6.
The azoethane-sensitized thermal reaction of isobutene has been studied at 526–565 K. The initial concentrations of azoethane and isobutene were in the ranges of 1.40–10.5 × 10?4 and 6.78–26.6 × 10?4 mol/dm3, respectively. From the initial rates of formation of ethane and 2-methylpentane the heat of formation of the 2-methyl-2-pentyl radical was determined. The result obtained is ±H(2-methyl-2-pentyl) = 0.8 ± 2.0 kcal/mol. The entropy of the radical, obtained from statistical mechanical calculations and experimentally, is S0(2-methyl-2 pentyl) = 92.8 ± 1.5 cal/mol°K. The results support the high heat of formation of the t-butyl radical suggested by different authors.  相似文献   

7.
The rate of the reaction CH2I2 + HI ? CH3I + I2 has been followed spectrophotometrically from 201.0 to 311.2°. The rate constant for the reaction fits the equation, log (k1/M?1 sec?1) = 11.45 ± 0.18 - (15.11 ± 0.44)/θ. This value, combined with the assumption that E2 = 0 ± 1 kcal/mole, leads to ΔH (CH2I, g) = 55.0 ± 1.6 kcal/mole and DH (H? CH2I) = 103.8 ± 1.6 kcal/mole. The kinetics of the disproportionation, 2 CH3I ? CH4 + CH2I2 were studied at 331° and are compatible with the above values.  相似文献   

8.
Electronic state calculations for the ions H4+ (with symmetries D 4 and C 2v) and H (with symmetries D 5 and D 2d) are made using the valence-bond method. All the configurations obtained from the given set of 1s-functions of Slater type are taken into account. Space functions are used throughout the computation (“spin-free quantum chemistry”). Preliminary quasidiagonalization of the secular equation is implemented by the construction of the multiplet eigenfunctions 2S+1Γ(α) from the initial variational functions. The results of the calculations are as follows: the ion H is unstable, the ion H is stable with equilibrium nuclear conformation of symmetry D 2d and with the energy of dissociation into H and H2 near 4 eV.  相似文献   

9.
The reactions of Cl and Br atoms with H2O2 have been studied in the range of 300–350 K using the very-low-pressure-reactor technique. It was found that metathesis to produce HX and HO2 is the only significant process (≤99%). For the reaction of Br k2 (300 K) = 1.3 ± 0.45 × 10?14 and k2 (350 K) = 3.75 ± 1.1 × 10?14 cm3/molecules·s, with an activation energy of 4.6 ± 0.7 kcal/mol. Using an estimated A factor for A2, we find suggesting that a best choice is E2 = 3.9 ± 0.4 kcal/mol. The relation of these values to ΔH (HO2) is discussed.  相似文献   

10.
Acid hydrolysis of the ester function in Δ-(?)5892-(RR)-[Co (trien) (glyOEt) Cl]2+ ((?)- 1 ) produces optically pure Δ-(?)589-(RR)-[Co (trien) (glyOH)Cl]2+ ((?)- 4 ). Hg2+ induced removal of chloride in (?)- 4 follows the rate law kobs = kHg [Hg2+] with kHg = (1.36 ± 0.03) × 10?2 M?1s?1, 25°, μ=1.0, and produces optically pure Δ-(?)5892-(RR)-[Co(trien) (glyO)]2+ ((?)- 2 ). Competition by NO occurs in this reaction ([NO], 1M, 3%) indicating a path whereby external nucleophiles (Y?NO, H2O) compete with the intramolecular carboxylate function for an intermediate of reduced coordination number. Rapid ring closure to 2 must ensue for Y ? H2O. Base hydrolysis of chloride in (±)- 1 produces (±)- 2 together with its diastereoisomer β2-(RS, SR)-[Co(trien) (glyO)]2+, ((±)- 3 ), in which one secondary amine function has an inverted configuration. 2 and 3 incorporate 18O-labelled solvent into the Co-O position of the coordinated carboxylate moiety ( 2: 9.0%; 3: 12.3%) indicating that at least part of the product arises via intramolecular hydrolysis in β2-hydroxo ethylglycinate intermediates (Fig. 4). Base hydrolysis of (?)- 4 follows the rate law Kobs = kOH[OH?] with kOH = (6.3 ± 0.6) × 10?4M?1 S?1, 25°, μ = 1.0 producing (?)- 2 (37-45%) and (?)- 3 (63-55%), the ratio being somewhat medium dependent. Competition by added N (1M) occurs using (±) - 4 forming β2-(RR, SS)-[Co (trien) (glyO)N3]+ (~2%) and β2-(RS, SR)-[Co (trien) (glyO)N3]+ (~ 13%). Mutarotation at the secondary nitrogen centre is shown to occur after the rate determining loss of Cl? in 1 and 4 and before the formation of 2 and 3 . It is concluded that this secondary nitrogen is the site of deprotonation in the reactive conjugate bases of 1 and 4 , and possible mechanisms for the mutarotation process are considered.  相似文献   

11.
The thermal, unimolecular elimination of HF from CH3CF3 was studied by three different groups over the temperature range 1000° to 1800°K. While the reported kinetic parameters varied greatly, it is shown here that these data may be satisfactorily correlated in terms of a four-center transition state. This correlation results in ΔE = 69.2 kcal/mol, and log (k/s?1) = 14.6 – 72.6/θ. These results may then be combined with the kinetics of the chemically activated elimination of HF from CH3CF3 formed by the recombination of methyl and trifluoromethyl radicals. The data from three different laboratories are shown to be in excellent agreement. These data, combined with extant thermal data, yield as a best value DH(CH3? CF3) = 99.6 ± 1.1 kcal/mol. This gives the unexpectedly high value of DH298°(CH3? CF3) = 101.2 ± 1.1 kcal/mol. It is suggested that dipoledipole interactions, primarily in CH3CF3, account for this surprisingly strong C? C bond dissociation energy. These results also yield δH(CH3CF3; g, 298) = ?178.6 ± 1.5 kcal/mol.  相似文献   

12.
A kinetic study has been made of the gas phase, I2-catalyzed decomposition of (CH3)2S at 630–650 K. Some I2 is consumed initially, reaching a steady-state concentration. The initial major products are CH4 and CH2S together with small amounts of CH3SCH2I, CH3I, HI, and CS2. The initial reaction corresponds to a pseudo-equilibrium: accompanied by: and which brings (I2) into steady state and a final complex reaction: From the initial rate of I2 loss it is possible to obtain Arrhenius parameters for the iodination: We measure k1, (644 K) = 150 L/mol s and from both the Arrhenius plot and independent estimates A1 (644 K) = 1011.2 ± 0.3 L/mol s. Thus, E1 = 26.7 ± 1 kcal/mol. From the steady-state I2 concentration, an assumed mechanism and the known rate parameters for the CH3I/HI system. It is possible to deduce KA (644) = 3.8 × 10?2 with an uncertainty of a factor of 2. Using an estimated ΔS (644) = 4.2 ± 1.0 e.u. we find ΔHA (644) = 7.0 ± 1.1 kcal. With 〈ΔCPA〉644 = 1.2 this becomes: ΔHA(298) = 6.6 ± 1.1 kcal/mol. Then ΔH (CH3SCH2I) = 6.3 ± 1 kcal/mol. Making the assumption that E?1 = 1.0 ± 0.5 kcal/mol we find ΔH (644) = 25.7 ± 0.7 kcal/mol and with 〈ΔCPI〉 = 1.2; ΔH = 25.3 ± 0.8 kcal/mol. This gives ΔH (CH3S?H2) = 35.6 ± 1.0 kcal/mol and DH (CH3SCH2? H) = 96.6 ± 1.0 kcal/mol. This then yields Eπ(CH2S) = 52 ± 3 kcal. From the observed rate of pressure increase in the system and the preceding data k3, is calculated for the step CH3SCH2 → CH3 + CH2S. From an estimated A-factor E3 is deduced and from the overall thermochemistry values for k?3 and E?3. A detailed mechanism is proposed for the I-atom catalyzed conversion of CH2S to CS2 + CH4.  相似文献   

13.
The kinetics of the gas-phase dehydrogenation of cyclopentane to cyclopentene is found to be consistent with a slow attack by an I atom (step 4, text) on cyclopentane in the range 282–382°C. The measured rate constants fit the Arrhenius equation, log k4 = 11.95 ± 0.08 – (24.9 ± 0.23)/θ 1 mole?1 sec?1, where θ = 2.303 R T in kcal/mole. This leads to a value of ΔH = 24.3 ± 1 kcal/mole and a bond dissociation energy DH = 94.9 ± 1 kcal/mole. The latter value is identical with DH0(i-Pr-H) = 95 ± 1 kcal/mole and signifies that cyclopentane and the cyclopentyl radical have the same strain energy. Arrhenius parameters are deduced for all six steps in the reaction mechanism. Surface reactions are shown to be unimportant. Cyclopentyl iodide is an unstable intermediate in the reaction and the rate constant for its bimolecular formation from HI + cyclopentene is found to be log k6 = 8.40 ± 0.29 - (26.9 ± 0.8)/θ 1 mole?1 sec?1. Together with the equilibrium constant, this yields for the unimolecular elimination of HI from cyclopentyl iodide, the rate constant, log k5 = 13.3 ± 0.3 – (42.8 ± 1.2)/θ sec?1.  相似文献   

14.
The equilibrium constants of the reactions MBr2(s) + Al2Br6(sln) ? MAl2Br8(sln) M = Cr, Mn, Co, Ni, Zn, Cd have been measured at 298 K in toluene. Ni: 0.017 ± 0.0024, Co: 0.54 ± 0.07, Zn: 1.5 ± 0.2, Mn: 2.1 ± 0, 7, Cr: 2.2 ± 1, Cd: 7 ± 5. They are compared with literature values of the equilibrium constants of analogous reactions in the gas phase MX2(s) + Al2X6(g) ? MAl2X8(g), X = Cl, Br. For CoAl2Br8(sln) the temperature dependence of the equilibrium constant yielded ΔfH = ?9.4 ± 1 kJ mol?1 and ΔfS = ?39.5 ± 3 J mol?1 K?1 while literature values for CoAl2Br8(g) are ΔfH = 42.4 ± 2 kJ mol?1 and ΔfS = 42.9 ± 2 J mol?1 K?1. The solubility of Al2Br6 in toluene as well as its enthalpy of dissolution have been measured in order to evaluate ΔH° and ΔS° of the solvation of Al2Br6(g) and CoAl2Br8(g) in toluene by a thermodynamic cycle. Solvation of Al2Br6(g): ΔH = ?72.7 ± 1 kJ mol?1, ΔS = ?139.6 ± 4 J mol?1 K?1, solvation of CoAl2Br8(g): ΔH = ?124.5 ± 4kJ mol?1, ΔS = ?222 ± 9J mol?1 K?1. Thus, CoAl2Br8 interacts more strongly with the solvent toluene than Al2Br6 does.  相似文献   

15.
The kinetics of C2H5O2 and C2H5O2 radicals with NO have been studied at 298 K using the discharge flow technique coupled to laser induced fluorescence (LIF) and mass spectrometry analysis. The temporal profiles of C2H5O were monitored by LIF. The rate constant for C2H5O + NO → Products (2), measured in the presence of helium, has been found to be pressure dependent: k2 = (1.25±0.04) × 10?11, (1.66±0.06) × 10?11, (1.81±0.06) × 10?11 at P (He) = 0.55, 1 and 2 torr, respectively (units are cm3 molecule?1 s?1). The Lindemann-Hinshelwood analysis of these rate constant data and previous high pressure measurements indicates competition between association and disproportionation channels: C2H5O + NO + M → C2H5ONO + M (2a), C2H5O + NO → CH3CHO + HNO (2b). The following calculated average values were obtained for the low and high pressure limits of k2a and for k2b : k = (2.6±1.0) × 10?28 cm6 molecule?2 s?1, k = (3.1±0.8) × 10?11 cm3 molecule?1 s?1 and k2b ca. 8 × 10?12 cm3 molecule?1 s?1. The present value of k, obtained with He as the third body, is significantly lower than the value (2.0±1.0) × 10?27 cm6 molecule?2 s?1 recommended in air. The rate constant for the reaction C2H5O2 + NO → C2H5O + NO2 (3) has been measured at 1 torr of He from the simulation of experimental C2H5O profiles. The value obtained for k3 = (8.2±1.6) × 10?12 cm3 molecule?1 s?1 is in good agreement with previous studies using complementary methods. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
The oxidation of Na4Fe(CN)6 complex by S2O anion was found to follow an outer‐sphere electron transfer mechanism. We firstly carried out the reaction at pH=1. The specific rate constants of the reaction, kox, are (8.1±0.07)×10?2 and (4.3±0.1)×10?2 mol?1·L·s?1 at μ=1.0 mol·L?1 NaClO4, T=298 K for pH=1 (0.1 mol·L?1 HCl04) and 8, respectively. The activation parameters, obtained by measuring the rate constants of oxidation 283–303 K, were ΔH=(69.0±5.6) kJ·mol?1, ΔS=(?0.34±0.041)×102 J·mol?1·K?1 at pH=l and ΔH=(41.3±5.5) kJ·mol?1, ΔS=(?1.27±0.33)×102 J·mol?1·K?1 at pH=8, respectively. The cyclic voltammetry of Fe(CN) shows that the oxidation is a one‐electron reversible redox process with E1/2 values of 0.55 and 0.46 V vs. normal hydrogen electrode at μ=1.0 mol·L?1 LiClO4, for pH=1 and pH=8 (Tris). respectively. The kinetic results were discussed on the basis of Marcus theory.  相似文献   

17.
Crystal Structure of SrZn(OH)4 · H2O Colorless crystals of SrZn(OH)4 · H2O are obtained by electrochemical oxidation of Zn in a zinc/iron pair in an aqueous ammonia solution saturated with strontium hydroxide. The X-ray crystal structure determination was now successful including all hydrogen positions: P1 , Z = 2, a = 6.244(1) Å, b = 6.3000(8) Å, c = 7.701(1) Å, α = 90.59(1)°, β = 112.56(2)°, γ = 108.66(2)°, N(F ≥ 3σF) = 1967, N(Var.) = 84, R/Rw = 0.020/0.024. In SrZn(OH)4 · H2O Zn2+ is tetrahedrally coordinated by four OH? -ions while Sr2+ has 6 OH? and one H2O as neighbours. The polyhedra around Sr2+ are connected to chains which are linked three-dimensionally by isolated tetrahedra [Zn(OH)4]. Hydrogen bonds between H2O as donor and OH? are characterized by raman spectroscopy.  相似文献   

18.
The equilibrium constant for the reaction has been determined between 331 and 480°K using a variable-temperature flowing afterglow. These data give ΔH°(1) = -1.03 ± 0.21 kcal/mol and ΔS°(1) = —4.6 ± 1.0 cal/mol°K. When combined with the known thermochemical values for HBr, Br?, and HNO3, this yields ΔH(NO3?) = -74.81 ± 0.54 kcal/mol and S(NO3?) = 59.4 cal/mol·°K. In addition ΔHn-1,n and ΔSn-1,nfor the gas-phase reactions were determined for n = 2 and 3. The implications of these measurements to gas-phase negative ion chemistry are discussed.  相似文献   

19.
Two coordination polymers {[Cd(phen)](C6H8O4)3/3} ( 1 ) and {[Cd(phen)](C7H10O4)3/3} · 2H2O ( 2 ) were structurally characterized by single crystal X‐ray diffraction methods. In 1 (C2/c (no. 15), a = 16.169(2)Å, b = 15.485(2)Å, c = 14.044(2)Å, β = 112.701(8)°, U = 3243.9(7)Å3, Z = 8), the Cd atoms are coordinated by two N atoms of one phen ligand and five O atoms of three adipato ligands to form mono‐capped trigonal prisms with d(Cd‐O) = 2.271‐2.583Å and d(Cd‐N) = 2.309, 2.390Å. The [Cd(phen)] moieties are bridged by adipato ligands to generate {[Cd(phen)](C6H8O4)3/3} chains, which, via interchain π—π stacking interactions, are assembled into layers. Complex 2 (P1¯(no. 2), a = 9.986(1)Å, b = 10.230(3)Å, c = 11.243(1)Å, α = 66.06(1)°, β = 87.20(1)°, γ = 66.71(1)°, U = 955.7(2)Å3, Z = 2) consists of {[Cd(phen)](C7H10O4)3/3} chains and hydrogen bonded H2O molecules. The Cd atoms are pentagonal bipyramidally coordinated by two N atoms of one phen ligand and five O atoms of three pimelato ligands with d(Cd‐O) = 2.213—2.721Å and d(Cd‐N) = 2.329, 2.372Å. Through interchain π—π stacking interactions, the {[Cd(phen)](C7H10O4)3/3} chains resulting from [Cd(phen)] moieties bridged by pimelato ligands are assembled in to layers, between which the hydrogen bonded H2O molecules are sandwiched.  相似文献   

20.
pK values of N,N-dihydroxyethylglycine (bicine) and N-[tris(hydroxymethyl)methyl]-glycine (tricine) have been determined by the Irving-Rossotti method in an aqueous medium at 25, 30, 35, 40, 45, and 50°C and at different ionic strengths (I = 0.1, 0.5, and 1.0). Plots between pKa(NH) and 1/T for various ionic strengths have been obtained and the values of slopes have been used to calculate the ΔH, ΔS, and ΔG for the dissociation reactions of bicine and tricine. The ΔH, ΔS, and ΔG values for bicine were found to be 10.6 ± 0.6 kcal mol?1, ?1.9 ± 1.8 e.u., and 11.1 ± 0.06 kcal mol?1, respectively, and for tricine 11.2 ± 0.6 kcal mol?1, 1.6 ± 1.6 e.u., and 10.7 ± 0.06 kcal mol?1, respectively. The pKa(NH) values decrease with rise in temperature but the influence of ionic strength is not significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号