首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Previous 4-21G ab initio geometry optimizations of various conformations of the model dipeptides (N-acetyl N'methyl amides) of glycine (GLY) and the alanine (ALA) have been used to help refine the empirical force constants and equilibrium geometry in the CHARMM force field for peptides. Conformationally dependent geometry trends from ab initio calculations and positions of energy minima on the ab initio energy surfaces have been used as guides in the parameter refinement, leading to modifications in the bond stretch, angle bending, and some torsional parameters. Preliminary results obtained with these refined empirical parameters are presented for the protein Crambin. Results for the cyclic (Ala-Pro-DPhe)2 are compared with those from other calculations. It seems that the dihedral angle fit achieved by the new parameters is significantly improved compared with results from force fields whose derivation does not include ab initio geometry trends.  相似文献   

2.
The imposition of symmetry in electronic structure calculations can be plagued by artifactual symmetry-breaking in orbital or configuration amplitudes. While most ab initio computer code is well-developed to impose symmetry constraints in D2h and its subgroups, the problem is not nearly as tractable in higher-symmetry point groups. This article describes the successful modification of existing D2h ab initio computer code to handle symmetry constraints in higher-symmetry point groups. Prospects for the development of ab initio computer code that runs fully under any point group are also discussed.  相似文献   

3.
A new method is presented for approximate ab initio calculations in quantum chemistry. It is called CCAM (charge conserving approximation method). The calculation method does not include the use of empirical parameters. We use Slater type orbitals as basis set, replacing STO's by STO-2G functions to evaluate three- and four-center integrals and making the STO-2G two-orbital charge distributions have the same total charge as STO. The results are presented for test calculations on five molecules. In view of these results, CCAM is better than ab initio calculations over STO-6G in the results on total energies, kinetic energies and occupied orbital energies. In atomic populations, dipole moments and unoccupied orbital energies, CCAM is also satisfactory. We estimate that CCAM would be as fast as ab initio calculations over STO-2G in evaluating molecular integrals.  相似文献   

4.
Furtherab initio calculations of proton coupling constants using the LCGO technique are presented for the allyl radical, showing varying degrees of success.
Zusammenfassung Es werden weitereab initio Rechnungen für die Proton-Kopplungskonstante angegeben wobei die LCGO-Methode auf das Allylradikal mit unterschiedlichem Erfolg angewandt wird.
  相似文献   

5.
A new approach for the calculation of electrostatic potential derived atomic charges is presented. Based on molecular orbital calculations in the PRDDO/M approximation, the new parametrized electrostatic potential (PESP) method is parametrized against ab initio MP2/6-31G** calculations. For a data set of 820 atoms in 145 molecules containing H, C, N. O, F, P, S, Cl, and Br (including hypervalent species), the PESP method achieves a mean absolute error of 0.037 e with a correlation coefficient of 0.990. Unlike other approximate approaches, no scaling factor is required to improve the agreement between PESP charges and the underlying ab initio results. PESP calculations are an order of magnitude faster than the simplest ab initio calculation (STO-3G) on large molecules while achieving a level of accuracy that rivals much more elaborate ab initio methods. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18: 955–969, 1997  相似文献   

6.
A semiempirical treatment of electrostatic potentials and partial charges is presented. These are the basic components needed for the evaluation of electrostatic interaction energies in combined quantum mechanical and molecular mechanical approaches. The procedure to compute electrostatic potentials uses AM1 and MNDO wave functions and is based on one previously suggested by Ford and Wang. It retains the NDDO approximation and is thus both easy to implement and computationally efficient. Partial atomic charges are derived from a semiempirical charge equilibration model, which is based on the principle of electronegativity equalization. Large sets of ab initio restricted Hartee-Fock (RHF/6-31G*) reference data have been used to calibrate the semiempirical models. Applying the final parameters (C, H, N, O), the ab initio electrostatic potentials are reproduced with an average accuracy of 20% (AM1) and 25% (MNDO), respectively, and the ab initio potential derived charges normally to within 0.1 e. In most cases our parameterized models are more accurate than the much more expensive quasi ab initio techniques, which employ deorthogonalized semiempirical wave functions and have generally been preferred in previous applications. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Ab initio molecular orbital calculations were used to study hydrogen bonding interactions and interatomic distances of a number of hydrogen bonded complexes that are germane to biomolecular structure and function. The calculations were carried out at the STO-3G, 3-21G, 6-31G*, and MP2/6-31G* levels (geometries were fully optimized at each level). For anionic species, 6-31 + G* and MP2/6-31 + G* were also used. In some cases, more sophisticated calculations were also carried out. Whenever possible, the corresponding enthalpy, entropy, and free energy of complexation were calculated. The agreement with the limited quantity of experimental data is good. For comparison, we also carried out semiempirical molecular orbital calculations. In general, AM1 and PM3 give lower interaction enthalpies than the best ab initio results. With regard to structural results, AM1 tends to favor bifurcated structures for O? H-O and N? HO types of hydrogen bonds, but not for hydrogen bonds involving O-H? S and S-H? O, where the usual hydrogen bond patterns are observed. Overall, AM1 geometries are in general in poor agreement with ab initio structural results. On the other hand, PM3 gives geometries similar to the ab initio ones. Hence, from the structural point of view PM3 does show some improvement over AM1. Finally, insights into the formation of cyclic or open formate–water hydrogen bonded complexes are presented. © 1992 by John Wiley & Sons, Inc.  相似文献   

8.
9.
10.
Equilibrium geometries, force constants, barriers to linearity, charge distributions, dipole moments, and electron spin density of HOO, HOS, HSO, and HSS radicals are calculated by CNDO/2 and INDO methods using respectively the original and some recently introduced scheme of parametrization. Three sets of calculations, namely, CNDO/2(sp), CNDO/2(spd), and INDO, are performed, and the results are compared with the ab initio and experimental values, wherever available. A good agreement is obtained for geometry in the case of CNDO/2 (sp) and INDO calculations. The performance of CNDO/2 (spd) calculations in this regard is quite unreliable. The stretching force constants are considerably overestimated by all the methods, while the bending force constants are in reasonable agreement with the ab initio values. With respect to dipole moments, the CNDO/2 values are in better agreement with the ab initio results than the INDO values. In all the cases, the dipole moment vector directions are in complete disagreement with the ab initio predictions.  相似文献   

11.
A method is implemented within the context of dynamical nucleation theory in order to efficiently determine the ab initio water dimer evaporation rate constant. The drive for increased efficiency in a Monte Carlo methodology is established by the need to use relatively expensive quantum mechanical interaction potentials. A discussion is presented illustrating the theory, algorithm, and implementation of this method to the water dimer. Hartree–Fock and second order Møller–Plesset perturbation theories along with the Dang–Chang polarizable classical potential are utilized to determine the ab initio water dimer evaporation rate constant. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

12.
The isometric group of a semirigid model of the ethylene glycol molecule with 3 internal degrees of freedom is derived. Results of extensiveab initio computation of the electronic potential function with a Gaussian lobe basis set are presented from which two differentr e conformations are predicted. Both feature one single internal H bond in which one of the lone electron pairs of the acceptor O atom is involved. Symmetry sets of isometricr e-conformations and of transition points of the potential function are discussed. Infrared matrix spectra of glycol and 2 deuterated modifications are presented and discussed on the basis of two internally bonded conformations predicted byab initio calculations. Dedicated to Prof. H. Hartmann on the occasion of his 60th birthday.  相似文献   

13.
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise because of (1) the transfer of torque between neighboring atoms and (2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry‐dependent multipole models. In this study, atomic force expressions for geometry‐dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives . The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen‐bonded dimers are used to test the intermolecular electrostatic energies and atomic forces calculated by geometry‐dependent multipoles fit to the ab initio electrostatic potential. The electrostatic energies and forces are compared with their reference ab initio values. It is shown that both static and geometry‐dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, whereas geometry‐dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry‐dependent multipole models. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

14.
Quantum chemical results will be presented on drugs, carcinogens, teratogens, and endogenous biomolecules using our new nonempirical ab initio MODPOT /VRDDO method, which incorporates as options to our ab initio LCAO -MO -SCF /CI programs ab initio effective core model potentials (MODPOT ) permitting one to calculate only the valence electrons explicitly yet accurately and an integral prescreening technique (VRDDO , variable retention of diatomic differential overlap) especially effective for spatially extended molecules. For molecules of the size of those of interest the MODPOT /VRDDO calculations run an order-of-magnitude faster than with our own fast ab initio programs and still retain accuracy to the third decimal place for the valence electron properties. We have also just implemented a new efficient MERGE technique which allows us to reuse integrals from a common skeletal fragment and only to have to recalculate those for a new atom or group or a change in its position. Examples will be presented of the use of this technique on a carcinogenic polycyclic aromatic hydrocarbon and its metabolites. The pKa's, oil-water partition, and drug distribution coefficients as a sensitive function of pH have been measured for a number of drugs as well as for relevant endogenous biomolecules. The pH dependence of the lipophilicities of such molecules has profound implication on appropriate use of such data in QSAR studies.  相似文献   

15.
16.
This article focuses on the development of an approach for ab initio protein structure prediction (PSP) without using any earlier knowledge from similar protein structures, as fragment‐based statistics or inference of secondary structures. Such an approach is called purely ab initio prediction. The article shows that well‐designed multiobjective evolutionary algorithms can predict relevant protein structures in a purely ab initio way. One challenge for purely ab initio PSP is the prediction of structures with β‐sheets. To work with such proteins, this research has also developed procedures to efficiently estimate hydrogen bond and solvation contribution energies. Considering van der Waals, electrostatic, hydrogen bond, and solvation contribution energies, the PSP is a problem with four energetic terms to be minimized. Each interaction energy term can be considered an objective of an optimization method. Combinatorial problems with four objectives have been considered too complex for the available multiobjective optimization (MOO) methods. The proposed approach, called “Multiobjective evolutionary algorithms with many tables” (MEAMT), can efficiently deal with four objectives through the combination thereof, performing a more adequate sampling of the objective space. Therefore, this method can better map the promising regions in this space, predicting structures in a purely ab initio way. In other words, MEAMT is an efficient optimization method for MOO, which explores simultaneously the search space as well as the objective space. MEAMT can predict structures with one or two domains with RMSDs comparable to values obtained by recently developed ab initio methods (GAPFCG, I‐PAES, and Quark) that use different levels of earlier knowledge. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
18.
A new method is proposed for the evaluation of numerical similarity measures for large molecules, defined in terms of their electron density (ED) distributions. The technique is based on the Molecular Electron Density Lego Assembler (MEDLA) approach, proposed earlier for the generation of ab initio quality electron densities for proteins and other macromolecules. The reliability of the approach is tested using a family of 13 substituted aromatic systems for which both standard ab initio electron density computations and the MEDLA technique are applicable. These tests also provide additional examples for evaluating the accuracy of the MEDLA technique. Electron densities for a series of 13 substituted benzenes were calculated using the standard ab initio method with STO-3G, 3-21G, and 6-31G** basis sets as well as the MEDLA approach with a 6-31G** database of electron density fragments. For each type of calculation, pairwise similarity measures of these compounds were calculated using a point-by-point numerical comparison of the EDs. From these results, 2D similarity maps were constructed, serving as an aid for quick visual comparisons for the entire molecular family. The MEDLA approach is shown to give virtually equivalent numerical similarity measures and similarity maps as the standard ab initio method using a 6-31G** basis set. By contrast, significant differences are found between the standard ab initio 6-31G** results and the standard ab initio results obtained with smaller STO-3G and 3-21G basis sets. These tests indicate that the MEDLA-based similarity measures faithfully mimic the actual, standard ab initio 6-31G** similarity measures, suggesting the MEDLA method as a reliable technique to assess the shape similarities of proteins and other macromolecules. The speed of the MEDLA computations allows rapid, pairwise comparisons of the actual EDs for a series of molecules, requiring no more computer time than other simplified, less detailed representations of molecular shape. The MEDLA method also reduces the need to store large volumes of numerical density data on disk, as these densities can be quickly recomputed when needed. For these reasons, the proposed MEDLA similarity analysis technique is likely to become a useful tool in computational drug design. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The ab initio Neglect of Differential Diatomic Overlap (N.D.D.O.) method of Roby is tested numerically for an extensive series of molecules. Agreement with the full ab initio molecular orbital method is poor. Total energies are more negative and dipole moments are overestimated. The failings of the N.D.D.O. method are accounted for using multipole-multipole expansions.  相似文献   

20.
Procedures have been developed to generate molecular electrostatic potentials based on correlated wave function from ab initio or semiempirical electronic structure programs. A new algorithm for point-wise sampling of the potential is described and used to obtain partial atomic charges via a linear, least squares fit between classical and quantum mechanical electrostatic potentials. The proposed sampling algorithm is efficient and promises to introduce less rotational variance in the potential derived partial charges than algorithms applied previously. Electrostatic potentials and fitted atomic charges from ab initio (HF/6–31G* and MP2/6-31G*) and semiempirical (INDO/S; HF, SECI, and SDCI) wave functions are presented for the electronic ground (S0) and excited (1Lb, 1La) states of 3-methylindole. © 1992 by John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号