首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal Sulphur Nitrogen Compounds. 17. Compounds HgN2S · NH3 and Hg(NH3)2I2 · S4N4 The crystal and molecular structures of the known compounds HgN2S · NH3 and of the new inclusion compound 2Hg(NH3)2I2 · S4N4 are reported. HgN2S · NH3 is orthorhombic, space group Pbca with a = 5.548, b = 10.158, c = 14.919 Å, Z = 8. In the dimeric molecules two Hg atoms are bridged to form eight-membered rings . In addition, each Hg is coordinated by an NH3 molecule and by an N atom of an adjacent ring. This results in a two-dimensional network. 2Hg(NH3)2I2 · S4N4 is tetragonal, space group P42/nmc, a = 8.948, c = 13.188 Å, Z = 2. It is an inclusion compound with S4N4 molecules in the holes of the lattice of the large Hg(NH3)2I2 tetrahedra.  相似文献   

2.
Crystal and Molecular Structure, of S4N4 · 2C7H8 The structure of the title compound has been determined from threedimensional X-ray data. Crystals are monoclinic, with unit cell dimenions a = 16.532 Å, b = 8.563 Å, c = 10.880 Å, β = 103.2°, space group C? C2/c and Z = 4. Least squares refinement, by use of 1132 independent reflections measured on a diffractometer has reached 3.9%. In the S4N4·2C7H8 molecules the organic components are linked to two sulfur atoms of the S4N4, ring each.  相似文献   

3.
S4N4 and its Derivatives: β-FeCl3 · S4N4, a Transition Metal Complex with the S4N4 Ligand The reaction of FeCl3 with S4N4 in CCl4 yields among other products two modifications of FeCl3 · S4N4. The β-modification crystallizes in the monoclinic space group P21/c with Z = 4 and the lattice parameters a = 6.803(3), b = 11.312(4), c = 13.784(5) Å and β 95.02(3)º. An X-ray analysis shows that the S4N4 ligand is bonded via one of its N atoms and completes the coordination tetrahedron around the Fe atom, like in the α-modification investigated earlier.  相似文献   

4.
On Chalcogenolates. 114. Crystal Structure of Potassium N-Cyanodithiocarbimate Monohydrate K2[S2C?N ? CN] · H2O The crystal structure of the title compound has been determined and refined to R = 0.0287. K2[S2C?N ? CN] · H2O crystallizes in the orthorhombic space group Pnma with a = 10.336(1) Å, b = 7.862(1) Å, c = 9.882(1) Å Z = 4. The structure is built up from layers of cations and anions. The potassium ion is coordinated by O, N, S atoms. The coordination polyhedron is a quadratic antiprism. 13C and 15N NMR data are reported and discussed.  相似文献   

5.
Poly(hydrogen chlorides): Formation and Crystal Structure of the Low-melting Adducts Me2S · 4HCl and Me2S · 5HCl The melting diagram of the system dimethylsulfide-hydrogen chloride has been determined using difference thermal analysis. It shows the existence of three adducts Me2S · nHCl with n = 1, 4 and 5 as well as melting points of ?91, ?53 and ?80°C (decomposition), respectively. The two phases richest in HCl have been further characterized by crystal structure analysis. Me2S · 4HCl is orthorhombic with space group Pnma and Z = 4 formula units per unit cell of dimensions a = 14.842, b = 9.747 and c = 6.652 Å at ?150°C. Me2S · 5HCl is monoclinic with P21/n and Z = 4 as well as a = 7.292, b = 12.537, c = 12.479 Å and β = 92.73° at ?168°C. The R values obtained with 1737 and 3047 independent observed reflections are 0.039 and 0.045, respectively. Both structures are ionic, according to [Me2SH][Cl(HCl)n?1], and shaped by hydrogen bonding.  相似文献   

6.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

7.
Syntheses, Crystal Structure, and Properties of the Cage‐like, Hexaacidic P12S12N8(NH)6 · 14 H2O and its Salts Li6[P12S12N14] · 26 H2O, (NH4)6[P12S12N14] · 10 H2O, and K6[P12S12N14] · 8 H2O The cage‐like acid P12S12N8(NH)6 · 14 H2O was obtained by the reaction of KSCN with P4S10 via the formation of K6[P12S12N14] · 8 H2O and subsequent ion exchange reactions in aqueous solution. Starting from the acid the salts Li6[P12S12N14] · 26 H2O and (NH4)6[P12S12N14] · 10 H2O were synthesized. According to X‐ray single‐crystal structure analyses the compounds are built up by isosteric P–N cages [P12S12N[3]8N[2]6]6–. Each of them is made up of twelve P3N3 rings, which exclusively exhibit the boat conformation. The cages have the idealized symmetry 2/m3; P12S12N8(NH)6 · 14 H2O: P1, a = 1119.11(7), b = 1123.61(7), c = 1125.80(6) pm, α = 80.186(4), β = 60.391(4), γ = 60.605(4)°, Z = 1; Li6[P12S12N14] · 26 H2O: Fm3, a = 1797.4(1) pm, Z = 4; (NH4)6[P12S12N14] · 10 H2O: P63, a = 1153.2(1), c = 2035.6(2) pm, Z = 2; K6[P12S12N14] · 8 H2O: R3c, a = 1142.37(5), c = 6009.6(3) pm, Z = 6. In the crystal the cages of the acid are crosslinked via hydrate molecules by hydrogen bonds. The cations in the salts show a high‐mobility and are located between the cages.  相似文献   

8.
S4N4 and its Derivatives: [Cu(CH3CN)CL2]2S2N2, a Transition Metal Complex with the S2N2 Ligand S4N4 reacts with CuCl2 · 2H2O in acetonitrile to give among other products the polymer copper(II) complex [Cu(CH3CN)Cl2]2S2N2, This complex crystallizes in the space group P21/c with a = 9.635(4), b = 7.270(4), c = 10.009(6) Å, β = 93.16(6)°, and Z = 2. An X-ray structure analysis (R = 0,065) shows the crystal to.contain parallel chains with copper atoms bridged by Cl and S2N2 bridges. The coordination of the Cu atom is square pyramidal. The S2N2 ring is planar. The SN bond distances are 1.633 and 1.641 Å.  相似文献   

9.
Hydrates of Weak and Strong Bases. XI. The Crystal Structures of NaOH · 3,5H2O and NaOH · 7 H2O. A Refinement The crystal structures of the hydrates NaOH · 3,5 H2O (space group P21/c, Z = 8 formula units per unit cell; lattice parameters: a = 6.481, b = 12.460, c = 11.681 Å, β = 104.12° at ?100°C) and NaOH · 7 H2O (P21/c, Z = 4; a = 7.344, b = 16.356, c = 6.897 Å, β = 92.91° at ?150°C) have been redetermined using MoKα diffractometer data. The obtained refinement of the structures, including the localization also of the H atoms for the first time, has led to new findings with respect to the H bonds. In particular, in both hydrates there is one such interaction of the rare type OH? …? OH2, from an OH? ion to an H2O molecule, i. e. with the OH? ion as the proton donor.  相似文献   

10.
Metal Sulfur Nitrogen Compounds. 20. Reaction Products of PdCl2 and Pd(CN)2 with S7NH. Preparation and Structure of the Complexes [Ph6P2N][Pd(S3N)(S5)] and X[Pd(S3N)(CN)2] X = [Me4N]+, [Ph4P]+ With PdCl2 and [Ph6P2N]OH S7NH forms the complex salt [Ph6P2N][Pd(S3N)(S5)], which could be isolated in two modifications (α- and β-form). The α-form is triclinic, a = 9.347(4), b = 14.410(8), c = 15.440(11) Å, α = 76.27°(5), β = 77.06°(4), γ = 76.61α(4), Z = 2, space group P1 . The β-form is orthorhombic, a = 9.333(2), b = 17.659(4), c = 23.950(6) Å, Z = 4. The structure of the metal complex is the same in the two modifications. One S3N? and one S52? are coordinate as chelate ligands to Pd. From S7NH, Pd(CN)2, and XOH X = [(CH3)4N]+ and [(C6H5)4P]+ the salts X[Pd(S3N)(CN)2] were formed. The (CH3)4N-salt is isomorphous with the analogous Ni compound described earlier, the (C6H5)4P-salt is triclinic, a = 9.372(4), b = 10.202(5), c = 13.638(6) Å, α = 86.36α(4), β = 85.66°(4), γ = 88.71°(4), Z = 2, space group P1 . One S3N? chelate ligand and two CN? ions are bound to Pd. In all these complexes the coordination of Pd is nearly square planar.  相似文献   

11.
The structure of (S4N3)2SbCI5 has been determined by X-ray methods using least-squares′ refinement. The compound crystallises monoclinic; C–P21/c, a = 9.24 Å, b = 17.77 Å, c = 11.29 Å, β = 110.06°, Z = 4. The antimony atom has a fivefold coordination the geometry being derived from a deformed octahedron, the S4N-rings retained their planar shape.  相似文献   

12.
Hydrates of Weak and Strong Bases. VII. Concerning the System Cesium Hydroxide—Water: The Crystal Structures of CsOH · 2H2O and CsOH · 3H2O In the context of structural studies of hydrates of the alkali metal hydroxide the crystal structure of CsOH · 2H2O and CsOH · 3H2O have been determined for the first time. The diffractometer data, obtained at -150 · C,made it possible to locate and refine also all the H-atoms. The dihydrate was found to probably form only one phase, melting incongruently at 2,5 · C. It is orthorhombic with space group Pca21 and Z = 8 formula units per unit cell. The lattice constants are a = 13.238, b = 6.747 and c = 9.121 A. With 1870 independent observed reflection a final R value of 0.013 was obtained. The trihydrate, melting congruently et -5.5 ·C, is monoclinic with space group P21/n,Z = 4 and lattice constants a = 8.637, b = 5.984, c = 10.061 Å and ß = 96.57 ·. With 2098 independent observed reflection the final R is 0.026. In both hydrate structures there are no simple characteristic coordination polyhedra for the cations; in each case it is rather the hydrogen-bonded and fully ordered anionic water structure which shows up as the determining building principle. Both these water structures are altogether three-dimensional, but primarily contain layers. The anionic layers are formed by condensation of small and medium rings, namely four-, five- and seven-membered rings in CsOH · 2H2O and four-, five- and six membered ones in CsOH · 3H2O. They are linked together by one set each of extra H2O molecules between the layers as well as by the Cs+ ions.  相似文献   

13.
Polynuclear Cobalt Complexes. IV. Preparation and Structure of [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O The binuclear peroxo complex [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O I crystallizes in the triclinic space group P1 . Lattice constants are a = 9.405(4), b = 9.270(4), c = 12.218(6)Å, α = 89.58(5), β = 99.08(6), γ = 114.79(5)° for Z = 1. The binuclear cation has a center of symmetry, so the Co? O? O? Co unit is planar. Three chelate rings have a common plane, the ligand configuration is δ.  相似文献   

14.
Reaction of Tin Chlorides with Polysulfides. Crystal Structures of (PPh4)2[SnCl2(S6)2], (PPh4)2[Sn4Cl4S5(S3)O], and (PPh4)2[SnCl6] · S8 · 2CH3CN . The reaction of PPh4[SnCl3] with Na2S4 in acetonitrile in the presence of small amounts of water yields (PPh4)2[Sn4Cl4S5(S3)O] and minor amounts of (PPh4)2[SnCl2(S6)2], PPh4Cl · 2S8 and (PPh4)2[SnCl6]. SnCl4 is partially reduced by (PPh4)2Sx, PPh4[SnCl3] and (PPh4)2[SnCl6] · S8 · 2CH3CN being produced. According to the X-ray crystal structure determination the [Sn4Cl4S5(S3)O]2?-ion consists of an O atom that is coordinated by four Sn atoms which in turn are liked with one another by five single S atoms and one S3 group. In the [SnCl2(S6)2]2?-ion the Sn atom is octahedrally coordinated by two Cl atoms in trans arrangement and by two chelating S6 groups. Octahedral [SnCl6]2? ions and S8 molecules in the crown conformation are present in (PPh4)4[SnCl6] · S8 · 2CH3CN.  相似文献   

15.
On Chalcogenolates. 111. Studies on Perthiocyanic Acid. 4. Crystal and Molecular Structure of Dimethyl Perthiocyanate (CH3)2C2N2S3 crystallizes with Z = 4 in the monoclinic space group P21/c with cell dimensions a = 7.661(4) Å, b = 11.675(5) Å, c = 9.549(5) Å, β = 116.7(3)·. The crystal and molecular structure has been determined from single X-ray data at 20°C and refined to a conventional R of 0.062. The structure consists of isolated 3,5-bis(methylmercapto)-1,2,4-thiadiazole molecules. The 1,2,4-thiadiazole ring is plane and stabilized by mesomerism.  相似文献   

16.
Structural Chemistry of PbBr2·C4H10O3 (Diethyleneglycol) Crystals of PbBr2·C4H10O3 have been synthesized and structurally characterized by single‐crystal X‐ray diffraction. PbBr2·C4H10O3 crystallizes monoclinic in space group P21/n (No. 14) with a = 9.370(1)Å, b = 10.045(1)Å, c = 21.090(1)Å, β = 98.98(1)° and Z = 8. The compound contains compact Pb—Br groups, which build colums parallel to [0 1 0] direction by Hydrogen Bonding.  相似文献   

17.
Selenostannates from Aqueous Solutions: Preparation and Structure of Na4SnSe4 · 16 H20 Pure selenostannates(IV) are prepared from aqueous solutions by reaction of SnSe2, with alkali selenides, strictly excluding oxygen. Na4SnSe4 · 16 H2O, being obtained from stoicheo-metric 1:2 quantities, is characterized by a complete X-ray structure analysis and by vibrational spectra. The compound is monoclinic (P21/m) with a = 8.673(3), b = 16.563(4), c = 8.647(2) Å, β = 92.10(2)°, Z = 2; it contains isolated tetrahedral SnSe44? ions [Sn? Se 2.504(2)?2.527(2) Å, Se? Sn? Se 106.6(1)?111.1(1)°] which are in contact to the hydrated octahedral [Na(OH2)6]+ ions through Se…?H? O bridges within an extensive hydrogen bridge system. The stretching vibrations of the SnSe44? ion are observed at 195 (n?1) and 252 cm?1 (n?3). The stretching force constant is approximately 1.59 mdyn/Å.  相似文献   

18.
Preparation and Crystal Structure of CrSO4 · 3 H2O Evaporating a solution of Cr2+ in dilute sulphuric acid at 70°C light blue crystals of CrSO4 · 3 H2O were grown. Its x-ray powder diffraction pattern is quite similar to that of CuSO4 · 3 H2O. The crystal structure refinement of CrSO4 · 3 H2O (space group Ce, a = 5.7056(8) Å, b = 13.211(2) Å, c = 7.485(1) Å, β = 96.73(1)°, Z = 4) from single crystal data, using the parameters of the copper compound as starting values, results in a final R-value of R = 3.8%. The surrounding of the Cr2+ ion can be described as a strongly elongated octahedron. The basal plane of the CrO6-octahedron consists of three hydrate oxygen atoms and one sulphate oxygen atom. The two more distant axial oxygen atoms also belong to sulphate groups. Thus they are forming chains of alterning CrO6-octahedra and SO4-tetrahedra along [110] and [1–10] linked via common corners. These chains are connected via sulphate groups and by bridging hydrogen bonds to a 3-dimensional network.  相似文献   

19.
Crystal Structure of SrHg(SCN)4 · 3 H2O SrHg(SCN)4 · 3 H2O is orthorhombic, space group Pcca, with a = 19.476(7), b = 8.150(1), c = 8.991(3) Å, V = 1427.1 Å3, Z = 4, dc = 2.67 g · cm?3, μ(AgKα) = 77.95 cm?1. The salt consists of nearly tetrahedral Hg(SCN)4 groups, Sr has a tricapped trigonal prismatic coordination: four N and five O atoms. The thiocyanate groups form end-to-end bridges and connect the Hg and Sr coordination polyhedra.  相似文献   

20.
The complexes cis‐[SnCl4(H2O)2]·2H2O ( 1 ), [Sn2Cl6(OH)2(H2O)2]·4H2O ( 3 ), and [HL][SnCl5(H2O)]·2.5H2O ( 4 ) were isolated from a CH2Cl2 solution of equimolar amounts of SnCl4 and the ligand L (L=3‐acetyl‐5‐benzyl‐1‐phenyl‐4, 5‐dihydro‐1, 2, 4‐triazine‐6‐one oxime, C18H18N4O2) in the presence of moisture. 1 crystallizes in the monoclinic space group Cc with a = 2402.5(1) pm, b = 672.80(4) pm, c = 1162.93(6) pm, β = 93.787(6)° and Z = 8. 4 was found to crystallize monoclinic in the space group P21, with lattice parameters a = 967.38(5) pm, b = 1101.03(6) pm, c = 1258.11(6) pm, β = 98.826(6)° and Z = 2. The cell data for the reinvestigated structures are: [SnCl4(H2O)2]·3H2O ( 2 ): a = 1227.0(2) pm, b = 994.8(1) pm, c = 864.0(1) pm, β = 103.86(1)°, with space group C2/c and Z = 4; 3 : a = 961.54(16) pm, b = 646.29(7) pm, c = 1248.25(20) pm, β = 92.75(1)°, space group P21/c and Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号