首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The reaction of the meso-diol, Δ,Λ-[(en)2Rh(OH)2Rh(en)2]4+, with aqueous H2O2 and 1 equiv. of NaOH at 90° forms the μ-peroxo-μ-hydroxo-bridged species Δ,Λ-[(en)2Rh(O2,OH)Rh(en)2]3+ in a yield of ca. 50%. The compound was crystallized as perchlorate and trifluoromethanesulfonate salts. The structure of the latter salt was determined by single-crystal X-ray diffraction. The crystals are triclinic with space group P1 and lattice constants a = 11.895(5), b = 12.491(4), c = 13.053(5) Å, α = 103.98(3), β = 92.59(3), γ = 119.52(6)°. The distances of the metal centres to the bridging peroxo ligand are 1.999(8) and 1.983(6) Å. The O? O distance in the peroxo group is 1.521(14) Å, and the dihedral angle of the Rh? O? O? Rh unit deviates 65° from planarity. The peroxo complex reacts reversibly with acid, and spectrophotometric studies suggest that the reaction involves protonation of the peroxo bridge, with pKa = 2.70(2) at 25° in 1M NaClO4.  相似文献   

2.
Polynuclear Cobalt Complexes. II. Preparation and Structure of [(tren) (NH3)Co(O2)Co(NH3) (tren)](SCN)4 · 2H2O The title compound is obtained on oxygenation of [Co(tren)(H2O)2]2+ in 6M aqueous ammonia or by ligand exchange starting from [(NH3)5Co(O2)Co(NH3)5]-(NO3)4. An X-ray structure determination was made. The substance forms monoclinic crystals, space group P21/c, lattice constants a=10,135, b=8,473, c=19,484 Å, β=108,58°, with two formula units in the cell. The final R is 0,066. The binuclear cation has a center of symmetry, so the Co? O? O? Co unit is planar; the Co? O? O angle is 111,5°. The tertiary nitrogen atoms of both chelate groups are cis to the O2 bridge, as found in doubly bridged [(tren)Co(O2,OH)Co(tren)](ClO4)3 · 3H2O. On acidification in solution, the singly bridged cation [(tren) (NH3)CoO2Co(NH3)(tren)]4+ (a) loses the bound O2 completely. But unlike the doubly bridged cation b , the rate of dissociation of a is independent of pH (Fig. 5). At higher pH (8–10) bridging a→b (Fig. 2) occurs. Both reactions must have the same rate determining step, the first order rate constants being of the order of 2 · 10?3 s?1 (25°, 0,35M KCl).  相似文献   

3.
The crystalline structure of a new compound Rh(III) of (NH4)2[Rh(NO2)3(NH3)(μ-OH)]2 composition has been determined. The crystallographic characteristics are H16N10O14Rh2: a = 6.3963(2) Å, b = 9.3701(4) Å, c = 13.6646(5) Å, β = 102.266(1)°, V = 800.28(5) Å3, Z = 2, d calc = 2.432 g/cm3. The distance Rh...Rh in the dimer is 3.200 Å. Original Russian Text Copyright ? 2006 by S. P. Khranenko, I. A. Baidina, and S. A. Gromilov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 47, No. 2, pp. 380–384, March–April, 2006.  相似文献   

4.
In the title mol­ecule, C15H11NO4S, the phenyl and benzene rings are quite planar, with maximum deviations from planarity of 0.009 (2) and 0.004 (1) Å, respectively. The γ‐pyrone ring deviates from planarity and makes a dihedral angle of 8.3 (3)° with the 2‐phenyl substituent. The sulfon­amide group is involved in N—H?O hydrogen bonding.  相似文献   

5.
Two new borate clusters, [NH3(CH2)3NH3]2[B14O20(OH)6] (1) and [NH3(CH2)6NH3]2[B14O20(OH)6] (2), have been made under solvothermal conditions and characterized by single-crystal X-ray structural analysis. Also their IR and UV–Vis spectroscopy, thermogravimetric analysis, and elemental analysis have been investigated, respectively. Crystal data for 1: triclinic, P-1, a = 8.8049(4) Å, b = 9.1585(5) Å, c = 10.1912(5) Å, α = 74.925(4)°, β = 80.987(4)°, γ = 67.495(5)°, Z = 1. Crystal data for 2: triclinic, P-1, a = 9.2010(4) Å, b = 9.8663(4) Å, c = 11.4191(4) Å, α = 107.014(4)°, β = 92.514(3)°, γ = 107.265(4)°, Z = 1. The structures consist of isolated 8-membered boron ring made of the [B7O10(OH)3]2?cluster subunits. UV–Vis spectral investigation indicates that they are wide-band-gap semiconductors. Fluorescence spectroscopy indicates that they are potential blue light materials.  相似文献   

6.
《Solid State Sciences》2001,3(1-2):121-132
The structures of the tetramethylammonium dichromate, [(CH3)4N]2Cr2O7 and trichromate, [(CH3)4N]2Cr3O10, were determined from single-crystal X-ray diffraction data. These compounds crystallize in the orthorhombic system (space group Pnma, with Z=4 and a=17.192(1) Å, b=8.55(1) Å, c=10.637(1) Å), for the dichromate and in the monoclinic system (space group P21/n, with Z=4 and a=11.366(2) Å, b=8.493(2) Å, c=20.187(4) Å, β=103.98(3)° for the trichromate. The structures consist of discrete dichromate anions (Cr2O7)2– or trichromate anions (Cr3O10)2–, respectively, stabilized by quaternary ammonium [(CH3)4N]+. Phase transitions in [(CH3)4N]2Cr2O7 have been evidenced by differential scanning calorimetry as well as a new allotropic variety of [(CH3)4N]2Cr2O7 which was characterized by X-ray powder diffraction. It crystallizes in an orthorhombic system with the unit cell parameters a=24.49(1) Å, b=8.85(1) Å, c=8.705(8) Å.  相似文献   

7.
Two new cerium(IV) phosphates were obtained: cerium(IV) hydroxidophosphate, Ce(OH)PO4, and cerium(IV) oxidophosphate, Ce2O(PO4)2, which were shown to complement the classes of isostructural compounds M(OH)PO4 and R2O(PO4)2, where M=Th, U and R=Th, U, Np, Zr. Ce2O(PO4)2 oxidophosphate is formed by elimination of H2O from the crystal structure of Ce(OH)PO4 during its thermal decomposition. The structures of Ce(OH)PO4 and Ce2O(PO4)2 are related to each other with the same Cmce space group and similar unit cell parameters (a=6.9691(3) Å, b=9.0655(4) Å, c=12.2214(4) Å, V=772.13(8) Å3, Z=8; a=7.0220(4) Å, b=8.9894(5) Å, c=12.544(1) Å, V=791.8(1) Å3, Z=4, respectively).  相似文献   

8.
Synthesis and Crystal Structures of [P(C6H5)4][1-(NH3)B10H9] and Cs[(NH3)B12H11] · 2CH3OH The reduction of [1-(NO2)B10H9]2? with aluminum in alkaline solution yields [1-(NH3)B10H9]? and by treatment of [B12H12]2? with hydroxylamine-O-sulfonic acid [(NH3)B12H11]? is formed. The crystal structures of [P(C6H5)4][1-(NH3)B10H9] (triclinic, space group P1 , a = 7.491(2), b = 13.341(2), c = 14.235(1) Å, α = 68.127(9), β = 81.85(2), γ = 86.860(3)°, Z = 2) and Cs[(NH3)B12H11] · 2CH3OH (monoclinic, space group P21/n, a = 14.570(2), b = 7.796(1), c = 15.076(2) Å, β = 111.801(8)°, Z = 4) reveal for both compounds the bonding of an ammine substituent to the cluster anion.  相似文献   

9.
Simple strontium peroxodisulfate SrS2O8 · 4H2O was synthesized by the reaction of solid Sr(OH)2 · 8H2O taken in 30% excess with an aqueous solution of (NH4)2S2O8; simple magnesium peroxodisulfate MgS2O8 · 6H2O was synthesized by the reaction of an aqueous solution of BaS2O8 with a stoichiometric amount of MgSO4 · 7H2O. Persulfate ammine complexes [M(NH3)4]S2O8 (M = Zn, Cu) were prepared in concentrated aqueous ammonia from [Zn(NH3)4](OH)2, [Cu(NH3)4](OH)2, and an ammoniac solution of (NH4)2S2O8. The compounds were characterized by X-ray powder diffraction (pRSA) and vibrational (IR and Raman) spectroscopy. Their stability was studied during storage and in DTA experiments. The [Zn(NH3)4]S2O8 structure was solved. Its crystals are orthorhombic, a = 10.5512(8) Å, b = 12.8039(12) Å, c = 8.0448(5) Å, V = 1086(15) Å3, Z = 4, space group Pna21. The compound is built of [Zn(NH3)4]2+ complex cations and S2O 8 2? persulfate anions. In a cation, Zn-N bond lengths are within 2.04(2)–2.056(14) Å. In an anion, the lengths of S(1)–O(4), S(2)–O(5), and O(4)–O(5) bridging bonds are, respectively, 1.676(14), 1.672(16), and 1.465(16) Å; the other S–O bond lengths are within 1.409(14)–1.443(12) Å; the S(1)O(4)O(5)S(2) torsion angle is 140.8(7)°.  相似文献   

10.
The reaction of ammonium heptamolybdate with hydrazine sulfate in an aqueous solution of glycine at room temperature yielded colorless crystals of (NH4)4[(NH3CH2CO)2(Mo8O28)] · 2 H2O. The crystal is monoclinic, space group C2/c (no. 15), a = 17.234 Å, b = 10.6892 Å, c = 18.598 Å, β = 108.280°, V = 3253.2 Å3, Z = 4. The crystal structure contains ammonium cations and isolated octamolybdate(4–) anions, [(NH3CH2CO)2(Mo8O28)]4–, with two zwitterionic glycine molecules as ligands.  相似文献   

11.
A new ammonium vanadium tellurate, (NH4)4{(VO2)2[Te2O8(OH)2]}·2H2O ( 1 ) was hydrothermally synthesized and characterized by elemental analyses, IR spectrum, TG analysis, and single crystal X–ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/n, a = 7.3843(15) Å, b = 17.111(3) Å, c = 7.3916(15) Å, β = 118.88(3)°, V = 817.9(3) Å3, Z = 2, R1 (I>2σ(I)) = 0.0235, wR2 (all data) = 0.0462. The structure of 1 consists of infinite anionic chains, {(VO2)2[Te2O8(OH)2]}4? which contain octahedral VO6 and TeO5OH units. Each octahedral VO6 and TeO5OH unit is connected by sharing an edge to form V2O10 and Te2O8(OH)2 binuclear units. The V2O10 and Te2O8(OH)2 binuclear units are alternatively connected to one another, creating complete infinite {(VO2)2[Te2O8(OH)2]}4? chains along the c direction. The anionic chains are separated by ammonium cations and water molecules that link the chains through a network of hydrogen bonds. In addition, the structure contains an extended network of O–H·····O hydrogen bonds between the chains.  相似文献   

12.
Two novel borates [(CH3)3NH][B5O6(OH)4] (I) and Na2[H2TMED][B7O9(OH)5]2 (II) have been synthesized under solvothermal conditions, and characterized by elemental analyses, FT-IR spectroscopy, and single crystal X-ray diffraction. Crystal data for I: monoclinic, P21/c, a = 9.3693(11) Å, b = 14.0375(17) Å, c = 10.0495(9) Å, β = 91.815(9)°, Z = 4. Crystal data for II: monoclinic, P21/c, a = 11.6329(2) Å, b = 11.9246(3) Å, c = 10.2528(2) Å, β = 100.178(2)°, Z = 4. Their crystal structures both have 3D supramolecular framework with large channels constructed by O–H···O hydrogen-bonding among the polyanions of [B5O6(OH)4]? or [B7O9(OH)5]2? clusters. The templating organic amines cations in I and II are both located in the channels of 3D supramolecular frameworks, respectively, and interact with the polyborate frameworks both electrostatically and via hydrogen bonds of N–H···O. Na2[H2TMED][B7O9(OH)5]2 is the first example of heptaborate co-templated by alkali metal and organic base, which is also rare in borates. The photoluminescence property of the synthetic sample of Na2[H2TMED][B7O9(OH)5]2 in the solid state at room temperature was also investigated by fluorescence spectrophotometer.  相似文献   

13.
A novel hydrated cobalt tetraborate complex NH4[Co(NH3)5(H2O)][B4O5(OH)4]2·6H2O, was synthesized by the reaction of NH4‐borate aqueous with CoCl2 and its structure was determined by single crystal X‐ray diffraction. The crystal system of this complex is orthorhombic, the space group is Pnma, and the unit cell parameters are a=1.2901(2) nm, b=1.6817(3) nm, c=1.1368(2) nm, α=β=γ=90°, V=2.4742(8) nm3, and Z=4. This compound contains infinite borate layers constructed from [B4O5(OH)4]2? units via hydrogen bonds. The adjacent polyborate anion layers are further linked together with the octahedral [Co(NH3)5(H2O)]3+ groups through hydrogen bonds to form 3D framework. The groups and guest water molecules are deposited in the empty space of this framework and interact with the layers by extensive hydrogen bonds. Infrared and Raman spectra (4000–400 cm?1) of NH4[Co(NH3)5(H2O)][B4O5(OH)4]2·6H2O were recorded at room temperature and analyzed. Fundamental vibrational modes were identified and band assignments were made. The middle band observed at 575 cm?1 in Raman spectrum is the pulse vibration of [B4O5(OH)4]2?.  相似文献   

14.
Chemical preparation, crystal structure, thermal analysis, IR absorption, and NMR studies are given for a new organic cyclohexaphosphate, the hexakis(2,4‐dimethylanilinium) cyclohexaphosphate hexahydrate ((2,4‐Me2C6H3NH3)6P6O18?6 H2O). This compound crystallizes in the monoclinic space group P21/n, with cell parameters a=10.914(4) Å, b=11.198(3) Å, c=25.670(2) Å, β=95.05(4)°, Z=2, and V=3124(2) Å3. Its crystal structure is determined and refined to a final R=0.054 for 4627 independent reflections. The atomic arrangement can be described as a layer organization built by P6O18‐ring anions and H2O molecules. Between these layers are located the organic groups that form H‐bonds with O‐atoms of the P6O18 rings and H2O molecules. Determination of the geometric characteristics of the H‐bonds show the existence in this structure of four particularly strong H‐bonding contacts (1.75, 1.76, 1.78, and 1.87 Å).  相似文献   

15.
An organic–inorganic hybrid compound [(CH3)2NH2]2ZnBr4 has been prepared at room temperature under the slow evaporation method. Its structure was solved at 150 K using the single-crystal X-ray diffraction method. [(CH3)2NH2]2ZnBr4 crystallizes in the monoclinic system – a = 8.5512 (12) Å, b = 11.825 (2) Å, c = 13.499 (2) Å, β = 90.358 (6)°, V = 1365 (4) Å3, and Z = 4, space group P21/n. In the structure of [(CH3)2NH2]2ZnBr4, tetrabromozincate anions are connected to organic cations through N–H⋯ Br hydrogen bonds. Differential scanning calorimetry (DSC) measurements indicate that [(CH3)2NH2]2ZnBr4 undergoes four phase transitions at T1 = 281 K, T2 = 340 K, T3 = 377 K, and T4 = 408 K. Meanwhile, several studies including DSC measurements and variable-temperature structural analyses were performed to reveal the structural phase transition at T = 281 K in [(CH3)2NH2]2ZnBr4. Conductivity and dielectric study as a function of temperature (378 < T [K] < 423) and frequency (10−1 < f [Hz] < 106) were investigated. Analysis of equivalent circuit, alternating current conductivity, and dielectric studies confirmed the phase transition at T4. Conduction takes place by correlated barrier hopping in each phase.  相似文献   

16.
Hydrogen hexamolybdogallate and hexamolybdoaluminate with the hexamminecadmium cation [Cd(NH3)6] · H[GaMo6O18(OH)6] · 6H2O (I) and [Cd(NH3)6] · H[AlMo6O18(OH)6] · 6H2O (II) were synthesized and studied by mass spectrometry, thermogravimetric analysis, powder X-ray diffraction, and IR spectroscopy. The crystals are monoclinic; I: a = 10.82 Å, b = 3.69 Å, c = 11.99 Å, β = 91.06°, V= 469.72 Å3, ρcalcd = 2.34 g/cm3, Z = 2; II: a = 10.81 Å, b = 3.67 Å, c =11.98 Å, β = 91.08°, V = 469.78 Å3, ρcalcd = 2.38 g/cm3, Z = 2.  相似文献   

17.
The room temperature reaction of (Bu4N)3V5O14 with PhPO3H2 in methanol yields the pentanuclear V(V) cluster (Bu4N)[V5O7(OCH3)2(PhPO3)5]·CH3OH (1·CH3OH). In contrast, the hydrothermal reaction of (Ph4P) [VO2Cl2], PhPO3H2 and (NH4)H2PO4 at 125°C for 96 hr yields the mixed valence V(IV)/V(V) species (Ph4P)2[V5O9(PhPO3)3(PhPO3H)2] (3). While the anions of both 1 and 3 exhibit a pentanuclear core, the structural consequences of 1-electron reduction of the fully oxidized cluster of 1 to produce 3 are quite dramatic, including reduction in coordination numbers at two vanadium sites and protonation of two phosphonate oxygen sites with concomitant structural reorganization. Crystal data: 1, monoclinic P21/n,a=12.167(2) Å,b=23.348(5) Å,c=22.508(5) Å,β=98.49(2)°,V=6323.9(19) Å3,Z=4,D calc=1.558 g cm?3; 3, triclinic, $P\bar 1$ ,a=13.478(3) Å,b=14.399(3) Å,c=23.638(5) Å,α=72.53(2)°,β=85.58(2)°,γ=69.88(4)°,V=4107.0(16) Å3,Z=2, Dcalc=1.479 g cm?3.  相似文献   

18.
Crystals of the zwitterionic copper(I) π‐complex [(HC≡CCH2NH3)Cu2Br3] have been synthesized by interaction of CuBr with [HC≡CCH2NH3]Br in aqueous solution (pH < 1) and X‐ray studied. The crystals are monoclinic: space group P21/n, a = 6.722(4), b = 12.818(8), c = 9.907(3) Å, β = 100.25(4)°, V = 840.0(8) Å3, Z = 4, R = 0.0592 for 3015 reflections. The crystal structure of the π‐complex contains isolated [(HC≡CCH2NH3)+(Cu2Br3)?]2 units which are incorporated into a framework by strong hydrogen N–H···Br and C≡C–H···Br bonds. The length of π‐coordinated propargylammonium C≡C bond is equal 1.216(8) Å and Cu(I)–(C≡C) distance equals 1.958(5) Å.  相似文献   

19.
A new ammine dual‐cation borohydride, LiMg(BH4)3(NH3)2, has been successfully synthesized simply by ball‐milling of Mg(BH4)2 and LiBH4 ? NH3. Structure analysis of the synthesized LiMg(BH4)3(NH3)2 revealed that it crystallized in the space group P63 (no. 173) with lattice parameters of a=b=8.0002(1) Å, c=8.4276(1) Å, α=β=90°, and γ=120° at 50 °C. A three‐dimensional architecture is built up through corner‐connecting BH4 units. Strong N? H???H? B dihydrogen bonds exist between the NH3 and BH4 units, enabling LiMg(BH4)3(NH3)2 to undergo dehydrogenation at a much lower temperature. Dehydrogenation studies have revealed that the LiMg(BH4)3(NH3)2/LiBH4 composite is able to release over 8 wt % hydrogen below 200 °C, which is comparable to that released by Mg(BH4)3(NH3)2. More importantly, it was found that release of the byproduct NH3 in this system can be completely suppressed by adjusting the ratio of Mg(BH4)2 and LiBH4 ? NH3. This chemical control route highlights a potential method for modifying the dehydrogenation properties of other ammine borohydride systems.  相似文献   

20.
Reactions of oxygenated cobalt(II) complexes. XII. A binuclear μ-peroxodicobalt(III) complex with a macrocyclic bridging ring
  • 1 XI: siehe [1].
  • Singly bridged [(tren) (NH3) CoO2(NH3) (tren)]4+ reacts with excess tren by replacement of NH3 in cis-position to the peroxo group and formation of a new type of doubly bridged μ-peroxo complex. An X-ray structure determination of [(tren)-Co(O2, tren)Co(tren)] (ClO4)4 · 2 H2O showed that the additional tren forms a macrocyclic bridging ring. The conformation of the CoOOCo group is transoid with a dihedral angle of 20°. The crystals are monoclinic with space group P21/c. The lattice constants are a = 9,798, b = 26,385, c = 16,385 Å, β = 110,2° with four formula units in the cell. The final R value is 0,124. ClO anions are disordered. The reactions of [(tren)Co(O2, tren)Co(tren)]4+ in aqueous solution are compared with those of [(tren) (NH3) CoO2Co (NH3tren)]4+. In acidic solution the new complex mainly decomposes to CoII and O2. In alcaline medium the bridging tren is replaced by an OH bridge, forming the well characterized doubly bridged [(tren)-Co(O2, OH)Co(tren)]3+. Differing from the singly bridged bis (ammino) complex, the reactions of which show no pH dependency at all, the decomposition of the tren bridged complex is H+-catalyzed. The kinetic data have been interpreted as (i) preceding fast protonation step which is followed by a conformational change of the bridging ring, (ii) acid hydrolysis of a Co-μ-tren bond and (iii) fast cleavage of the Co-OO bond which is labilized by coordinated H2O.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号