首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
Natural Occurrence of C(15)-Epimeric Coleons C and D and its Significance to the Stereochemistry of the Formation of a Spirocyclopropanring In a previous paper some evidence was presented for a predominant occurrence of epimeric coleons ((15S)-coleon C ((15 S)- 1a ), and (15S)-coleon D ((15S)- 2a )) in Plectranthus lanuginosus [1], The proposed structures have now been proven by careful comparison of their physical data with those of the already described C(15)-epimers whose structures were deduced by X-ray analysis of a derived cis-diketone 3 [5], Examination of the epimeric purity of coleons possessing a 2-hydroxy-1-methylethyl side-chain (coleons C , D , H , I , I ′ and derivatives) isolated from seven different species (Coleus, Plectranthus and Solenostemon) has shown that these coleons always occur as a mixture of C(15)-epimers, although in most cases with one predominant epimer. The consequences for the stereochemistry of the postulated in vivo formation of the methyl-substituted spirocyclopropane substructure is discussed.  相似文献   

2.
Partial Syntheses and Reactions of Abietanoid Derivatives (Lanugones) from Plectranthus lanuginosus and of Related Compounds Interconversions by partial syntheses of several lanugones establish their absolute configuration at C(15). Unexpected reactions exemplify the unique reactivity of these abietanoic diterpenes, - Lanugone O ( 4 ) was prepared in several steps from (15S)-coleon C ( 8a ; Scheme 2) thus establishing its (15S)-configuration. One of the intermediates, the 12-O-acetyl-6-oxoroyleanone 12 , through acetyl-migration sets up an equilibrium with the vinylogous quinone 13 (Scheme 3). - The chirality at C(15) in the dihydrofuran moiety of lanugone Q ( 16 ) was proven by acid-catalyzed conversion of lanugone O ( 4 ) to 16 . - Instead of the usual nucleophilic attack shown by quinomethanes, lanugone L (1 ) is electrophilically substituted at C(7) by acetic anhydride/pyridine (Scheme 1). - In a homosigmatropic [1,5]-H-shift, lanugone G ( 17 ) in solution is converted to the corresponding allyl substituted royleanone 18 (Scheme 4). - Methanolysis of lanugone J ( 19 ) leads to the expected royleanone 20 having the 2-methoxypropyl side chain ( Scheme 5 ). Similar reactions were found in acetolytic reactions. However, treatment-of spirocoleons with SOCl2/DMF produces mainly 12-deoxyroyleanones with allyl- and 2-chloropropyl groups, i. e. 19 → 26 and 27 ; 28 → 29 . The possible natural occurrence of these compounds is emphasized.  相似文献   

3.
Leaf-gland Pigments from Labiatae: 22 Novel Diterpenoids (Coleons and Royleanones) from Plectranthus lanuginosus We report the isolation and structure elucidation of 22 novel diterpenoids (named lanugones A, B, C, D, E, F, G, H, I, J, K, K′, L, M, N, O, P, Q, R, S and (155)-coleon C ( 28 ) and (155)-coleon D ( 29 )) from the leaf-glands of the above-mentioned plant (see Table 1). Structurally they belong to the subgroups of royleanones and coleons with the following structural characteristics: 8-hydroxy-1-methyl-spi-ro[2,5]oct-5-ene-4,7-diones, p-quinomethanes, extended (vinylogous) quinones, di-osphenols and diketones. Compounds 28 and 29 are (15S)-epimers of the already known coleon C and coleon D (with (15 R)-configuration), respectively. Furthermore, the already known 6,7-didehydroroyleanone ( 1 ) has been isolated in small amount. The present investigation has uncovered the broadest range of diverse chromo-phoric systems and oxydation levels so far found amongst diterpenoids in a single plant species. Most important for an understanding of the metabolic fate of an iso-propyl group is the full range found with the following metabolic stages: isopropyl-→ hydroxyisopropyl → dihydrofuran and spirocyclopropane → allyl- and 2-hydroxypropyl groups.  相似文献   

4.
Three Alkali‐Metal Erbium Thiophosphates: From the Layered Structure of KEr[P2S7] to the Three‐Dimensional Cross‐Linkage in NaEr[P2S6] and Cs3Er5[PS4]6 The three alkali‐metal erbium thiophosphates NaEr[P2S6], KEr[P2S7], and Cs3Er5[PS4] show a small selection of the broad variety of thiophosphate units: from ortho‐thiophosphate [PS4]3? and pyro‐thiophosphate [S3P–S–PS3]4? with phosphorus in the oxidation state +V to the [S3P–PS3]3? anion with a phosphorus‐phosphorus bond (d(P–P) = 221 pm) and tetravalent phosphorus. In spite of all differences, a whole string of structural communities can be shown, in particular for coordination and three‐dimensional linkage as well as for the phosphorus‐sulfur distances (d(P–S) = 200 – 213 pm). So all three compounds exhibit eightfold coordinated Er3+ cations and comparably high‐coordinated alkali‐metal cations (CN(Na+) = 8, CN(K+) = 9+1, and CN(Cs+) ≈ 10). NaEr[P2S6] crystallizes triclinically ( ; a = 685.72(5), b = 707.86(5), c = 910.98(7) pm, α = 87.423(4), β = 87.635(4), γ = 88.157(4)°; Z = 2) in the shape of rods, as well as monoclinic KEr[P2S7] (P21/c; a = 950.48(7), b = 1223.06(9), c = 894.21(6) pm, β = 90.132(4)°; Z = 4). The crystal structure of Cs3Er5[PS4] can also be described monoclinically (C2/c; a = 1597.74(11), b = 1295.03(9), c = 2065.26(15) pm, β = 103.278(4)°; Z = 4), but it emerges as irregular bricks. All crystals show the common pale pink colour typical for transparent erbium(III) compounds.  相似文献   

5.
Cleavage reactions of the dinuclear [{Ni(′S2C ′)}2] · DMF (′S2C ′ 2– = 1,3‐imidazolidinyl‐N,N′‐bis(2‐benzenethiolate)(2–)) with HNPiPr3 or HNSPh2 yielded the mononuclear complexes [Ni(NHPiPr3)(′S2C ′)] ( 1 ) and [Ni(NHSPh2)(′S2C ′)] ( 2 ) which have been completely characterized. The nickel‐carbene‐dithiolate [Ni(′S2C ′)] moiety is one of the very rare complex fragments that are able to coordinate both HNPR3 or HNSR2. IR spectra and X‐ray structure determinations show that 1 and 2 exhibit intramolecular N–H…S(thiolate) hydrogen bonds. Geometric parameters and NMR spectroscopic data of 1 and 2 are compatible with N–X single bonds and ylidic structures of the HNPiPr3 and HNSPh2 ligands. Comparison of Ni–N distances in diamagnetic and paramagnetic [Ni(NHSPh2)] complexes was rendered possible through the X‐ray structure determination of the homoleptic [Ni(NHSPh2)6]Cl2 ( 3 ) which formed as minor by‐product in the synthesis of 2 .  相似文献   

6.
Three rigid and structurally simple heterocyclic stilbene derivatives, (E)-3H,3′H-[1,1′-biisobenzofuranylidene]-3,3′-dione, (E)-3-(3-oxobenzo[c] thiophen-1(3H)-ylidene)isobenzofuran-1(3H)-one, and (E)-3H,3′H-[1,1′-bibenzo[c] thiophenylidene]-3,3′-dione, are found to fluoresce in their neat solid phases, from upper (S2) and lowest (S1) singlet excited states, even at room temperature in air. Photophysical studies, single-crystal structures, and theoretical calculations indicate that large energy gaps between S2 and S1 states (T2 and T1 states) as well as an abundance of intra and intermolecular hydrogen bonds suppress internal conversions of the upper excited states in the solids and make possible the fluorescence from S2 excited states (phosphorescence from T2 excited states). These results, including unprecedented fluorescence quantum yields (2.3–9.6 %) from the S2 states in the neat solids, establish a unique molecular skeleton for achieving multi-colored emissions from upper excited states by “suppressing” Kasha's rule.  相似文献   

7.
Three rigid and structurally simple heterocyclic stilbene derivatives, (E)‐3H,3′H‐[1,1′‐biisobenzofuranylidene]‐3,3′‐dione, (E)‐3‐(3‐oxobenzo[c] thiophen‐1(3H)‐ylidene)isobenzofuran‐1(3H)‐one, and (E)‐3H,3′H‐[1,1′‐bibenzo[c] thiophenylidene]‐3,3′‐dione, are found to fluoresce in their neat solid phases, from upper (S2) and lowest (S1) singlet excited states, even at room temperature in air. Photophysical studies, single‐crystal structures, and theoretical calculations indicate that large energy gaps between S2 and S1 states (T2 and T1 states) as well as an abundance of intra and intermolecular hydrogen bonds suppress internal conversions of the upper excited states in the solids and make possible the fluorescence from S2 excited states (phosphorescence from T2 excited states). These results, including unprecedented fluorescence quantum yields (2.3–9.6 %) from the S2 states in the neat solids, establish a unique molecular skeleton for achieving multi‐colored emissions from upper excited states by “suppressing” Kasha's rule.  相似文献   

8.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

9.
Spin-polarized Xα–SW calculations of [Fe63?S)8(PH3)6]2+ as a model of the cluster [Fe63?S)8(PEt3)6] (BPh4)2 have been performed. The highest occupied energy levels are well separated from empty levels, and up to a maximum of eight electrons can be unpaired, giving a maximum spin state with S = 4. This electronic state is consistent with the magnetic data of [Fe63?S)8(PEt3)6](BPh 4)2, which have been interpreted using the Heisenberg–Dirac–Van Vleck exchange spin Hamiltonian. The S = 4 state arises from the magnetic coupling between five low-spin (Si = 1/2) and one intermediate-spin (S = 3/2) iron(III) center. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The reaction of (NH4)2PbCl6 and fuming sulfuric acid (65 % SO3) in a sealed glass tube at 250 °C led to colorless single crystals of Pb[S3O10] (orthorhombic, Pbcn, Z = 4, a = 10.9908(4), b = 8.5549(3), c = 8.0130(3) Å, V = 753.42(5) Å3). The compound shows a three‐dimensional linkage of the tenfold oxygen coordinated Pb2+ ions and exhibits the unusual trisulfate anion, [S3O10]2–, that consists of three vertex connected [SO4] tetrahedra. The distances S–O within the S–O–S bridges of the anion are remarkable asymmetric with distances of 155 and 169 pm, respectively. This structural feature is well reproduced by calculations on a PBE0/cc‐pVTZ and a MP2/cc‐pVTZ level of theory. Similar calculations allow also for an inspection of the yet unknown corresponding acid, H2S3O10. Also for this acid non‐symmetric S–O–S bridges are predicted. The thermal behavior of Pb[S3O10] is characterized by the loss of two equivalents of SO3 at low temperature and the decomposition of intermediate Pb[SO4] at higher temperature.  相似文献   

11.
The density functional method, B3PW91, using the 6–311+G(3df) basis function set from the Gaussian 98 collection of programs, was used to successfully reproduce the experimental structure parameters of polysulfur ring molecules, S6 – S14. Structural predictions of S5, S15, and S16 are also given. The relative electronic energies are also compared.  相似文献   

12.
Products from the reaction of 11-dihomodriman-8α-ol-12-one with several reagents such as MeSO3SiMe3, CF3SO3SiMe3, Sc(CF3SO3)3, conc. H2SO4 in EtOH (30% solution), and Amberlist-15 ion-exchange resin were studied. 11-Dihomodrim-8(9)-en-12-one and its oxime were synthesized. The reaction of its oxime with H3PO4 (86%) or CF3CO2H produced (1S,2S,4aS,8aS)-2,5,5,8a-tetramethyldecahydro-1H-naphtho [1,2-e]-3-methyl-4,5-dihydro-[1,2,6]-oxazine; with p-TsCl in Py, (1S,2S,4aS,8aS)-2,5,5,8a-tetramethyldecahydro-1H-naphtho[1,2-d]-2-methylpyrroline-N-oxide; and with PCl5 in Et2O, 11-acetylaminodrim-8(9)-ene and 11-methylaminooxodrim-8(9)-ene.  相似文献   

13.
The title compound, dendocarbin A [systematic name: (1R,5aS,9aS,9bR)‐1‐hydroxy‐6,6,9a‐trimethyldodecahydronaphtho[1,2‐c]furan‐3‐one], C15H22O3, is a sesquiterpene lactone isolated from Drimys winteri var chilensis. The monoclinic phase described herein displays an identical molecular structure to the orthorhombic phase that we reported previously [Paz Robles et al. (2014). Acta Cryst. C 70 , 1007–1010], while varying significantly in chain pitch, and can thus be considered as a borderline case of one‐dimensional isostructural polymorphism.  相似文献   

14.
An ‘old' Rhodiumsulfide with surprising Structure – Synthesis, Crystal Structure, and Electronic Properties of Rh3S4 The reaction of rhodium with rhodium(III)‐chloride and sulfur at 1320 K in a sealed evacuated quartz glass ampoule yields silvery lustrous, air stable crystals of the rhodiumsulfide Rh3S4. Although a sulfide of this composition was described in 1935 a closer characterization has not been undertaken. Rh3S4 crystallizes in a new structure type in the monoclinic space group C2/m with a = 1029(2) pm, b = 1067(1) pm, c = 621.2(8) pm, β = 107.70(1)°. Besides strands of edge‐sharing RhS6 octahedra which are connected by S2 pairs (S–S = 220 pm), the crystal structure of Rh3S4 contains Rh6 cluster rings in chair conformation with Rh–Rh single bond lengths of 270 pm. Both fragments are linked by common sulfur atoms. Extended Hückel calculations indicate bonding overlap for both S–S‐ and Rh–Rh‐interactions. Rh3S4 has a composition between the neighboring phases Rh2S3 and Rh17S15 and the structure combines typical fragments of both: RhS6‐octahedra from Rh2S3 and domains of metal‐metal bonds as found in Rh17S15. Rh3S4 is a metallic conductor, down to 4.5 K the substance shows a weak, temperature independent paramagnetism.  相似文献   

15.
The interaction of gold(III) complexes, [Au(cis‐DACH)Cl2]Cl and [Au(cis‐DACH)2]Cl3 complexes (DACH = cis‐1,2‐diaminocyclohexane), with 13C, 15N‐enriched thiourea (Tu) and 1,3‐diazinane‐2‐thione ligands was investigated. The progress of these reactions was monitored by NMR (1H, 13C, and 15N) and UV–vis spectroscopy as well as square wave stripping voltammetry. The kinetic studies of the substitution reactions between the above‐mentioned complexes with thiones in aqueous solutions containing 30 mM KCl, which is used to suppress the hydrolysis of the chloride complexes, were conducted. These reactions were followed under pseudo–first‐order conditions as functions of ligand concentration, pH, and temperature. The activation parameters (ΔH#, ΔS#) were calculated from Eyring plots, and the negative values of ΔS lend support for an associative mechanism. The kinetic data also indicated a relatively higher reactivity of [Au(cis‐DACH)Cl2]Cl than that of [Au(cis‐DACH)2]Cl3 toward the thiones.  相似文献   

16.
Summary Copper(I) trifluoromethanesulphonate and 5, 10, 15-trithia-cyclo-triveratrylene (Vn3S3, 3) react with CO in CHCl3 as solvent to yield a carbonyl complex which can be crystallised from EtOH in a CO atmosphere giving the complex [Cu(Vn3S3)(CO)]O3SCF3·0.5 EtOH (8), which was characterised by av(CO) absorption band at 2140 cm–1 indicating a weak back donation of copper(I). When (8) is heated in MeOH in an N2 atmosphere, complex [Cu(Vn3S3)(CH3OH)]O3SCF3·MeOH (15) is formed. X-ray analysis of (15) reveals a distorted tetrahedral coordination of the copper(I) ion with a strongly bonded methanol ligand (Cu–O 198 pm, Cu–S 229 pm).  相似文献   

17.
Applying a new synthesis protocol with cystamine dihydrochloride as sulfur source we were able to synthesize the new compound [La(dien)3]2[Sn2S6]Cl2 ( 1 ) (dien = diethylenetriamine) under solvothermal conditions. Under these conditions the S–S bond of the cystamine molecule is cleaved generating the S2– anions. The title compound is formed via an intermediate, (dienH)2Sn3S7, which reacts to the final product at longer reaction times. The structure crystallizes in the monoclinic space group P21/n and is composed of two ninefold coordinated [La(dien)3]3+complexes, one [Sn2S6]4– anion, and two Cl anions. The Hirshfeld surface analysis reveals a large number of intermolecular interactions including S ··· H and Cl ··· H bonding.  相似文献   

18.
In this work, we describe the syntheses, characterization, and antifungal activity of [In{S2CNR(R1)}3] (1), [Ga{S2CNR(R1)}3] (2), [Bi{S2CNR(R1)}3] (3), [In{S2CNR(R2)}3] (4), [Ga{S2CNR(R2)}3] (5), and [Bi{S2CNR(R2)}3] (6) {R?=?Me; R1?=?CH2CH(OMe)2; and R2?=?2-methyl-1,3-dioxolane}. All complexes have been characterized using infrared and 1H and 13C spectroscopy, and the structures of 1, 3, 4, and 6 have been authenticated by X-ray diffraction. The In(III)–dithiocarbamate bonding scheme depicts a distorted octahedral with asymmetric In(III)–S bonds and S–In–S angles. A pentagonal bipyramid is observed for the corresponding Bi(III) complexes with intermolecular Bi–S associations through the lone pair of electrons. The antifungal activities of 1–6 have been screened against Aspergillus niger, Aspergillus parasiticus, and Penicillium citrinum, and the results have been compared with those of nystatin and miconazole nitrate, as control drugs.  相似文献   

19.
A new class of diastereomeric pairs of non‐natural amino acid peptides derived from butyloxycarbonyl (Boc‐)protected cis‐(2S,3R)‐ and trans‐(2S,3S)‐β‐norbornene amino acids including a monomeric pair have been investigated by electrospray ionization (ESI) tandem mass spectrometry using quadrupole time‐of‐flight (Q‐TOF) and ion‐trap mass spectrometers. The protonated cis‐BocN‐β‐nbaa (2S,3R) (1) (βnbaa = β‐norbornene amino acid) eliminates the Boc group to form [M+H–Boc+H]+, whereas an additional ion [M+H–C4H8]+ is formed from trans‐BocN‐β‐nbaa (2S,3S) (2). Similarly, it is observed that the peptide diastereomers (di‐, tri‐ and tetra‐), with cis‐BocN‐β‐nbaa (2S,3R)‐ at the N‐terminus, initially eliminate the Boc group to form [M+H–Boc+H]+ which undergo further fragmentation to give a set of product ions that are different for the peptides with trans‐BocN‐β‐nbaa (2S,3S)‐ at the N‐terminus. Thus the Boc group fragments differently depending on the configuration of the amino acid present at the N‐terminus. It is also observed that the peptide bond cleavage in these peptides is less favoured and most of the product ions are formed due to retro‐Diels‐Alder fragmentation. Interestingly, sodium‐cationized peptide diastereomers mainly yield a series of retro‐Diels‐Alder fragment ions which are different for each diastereomer as they are formed starting from [M+Na–Boc+H]+ in peptides with cis‐BocN‐β‐nbaa (2S,3R)‐ at the N‐terminus, and [M+Na–C4H8]+ in peptides with trans‐BocN‐β‐nbaa (2S,3S)‐ at the N‐terminus. All these results clearly indicate that these diastereomeric pairs of peptides yield characteristic product ions which help distinguish the isomers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Copper(II) complexes of the ligands N2-[(R)-2-hydroxypropyl]- and N2-[(S)-2-hydroxypropyl]-(S)-phenylalaninamide performed chiral separation of N-dansyl-protected and unmodified amino acids in HPLC (reversed phase). With the aim of investigating which species are potentially involved in the discrimination mechanism, the two ligands were synthesized and their complexation equilibria with Cu2+ studied by potentiometry and spectrophotometry in aqueous solution up to pH 11.7. The formation constants of the species observed, [CuL]2+, [CuL2]2+, [CuLH–1]+, [CuL2H–1]+, [CuL2H–2], and [CuL2H–3]?, were quite similar for both compounds and were compared to those of (S)-phenylalaninamide. Most probably, in [CuL2H–3]? the ligands behave as terdentate, with the deprotonated OH group occupying an apical position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号