首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The yields of C5 and C6 alkyl nitrates from neopentane, 2-methylbutane, 2-methylpentane, 3-methylpentane, and cyclohexane have been measured in irradiated CH3ONONO-alkane-air mixtures at 298 ± 2 K and 735-torr total pressure. Additionally, OH radical rate constants for neopentyl nitrate, 3-nitro-2-methylbutane, 2-nitro-2-methylpentane, 2-nitro-3-methylpentane, and cyclohexyl nitrate, relative to that for n-butane, have been determined at 298 ± 2 K. Using a rate constant for the reaction of OH radicals with n-butane of 2.58 × 10?12 cm3 molecule?1 s?1, these OH radical rate constants are (in units of 10?12 cm3 molecule?1 s?1): neopentyl nitrate, 0.87 ± 0.21; cyclohexyl nitrate, 3.35 ± 0.36; 3-nitro-2-methylbutane, 1.75 ± 0.06; 2-nitro-2-methylpentane, 1.75 ± 0.22; and 2-nitro-3-methylpentane, 3.07 ± 0.08. After accounting for consumption of the alkyl nitrates by OH radical reaction and for the yields of the individual alkyl peroxy radicals formed in the reaction of OH radicals with the alkanes studied, the alkyl nitrate yields (which reflect the fraction of the individual RO2 radicals reacting with NO to form RONO2) determined were: neopentyl nitrate, 0.0513 ± 0.0053; cyclohexyl nitrate, 0.160 ± 0.015; 3-nitro-2-methylbutane, 0.109 ± 0.003; 2-nitro-2methylbutane, 0.0533 ± 0.0022; 2-nitro-2-methylpentane, 0.0350 ± 0.0096; 3- + 4-nitro-2-methylpentane, 0.165 ± 0.016; and 2-nitro-3-methylpentane, 0.140 ± 0.014. These results are discussed and compared with previous literature values for the alkyl nitrates formed from primary and secondary alkyl peroxy radicals generated from a series of n-alkanes.  相似文献   

2.
Abstract

The Syn isomers (3b and 4b) of xylene-bridged cryptophane showed selective complexing abilities for 2,2-dimethylbutane, 3-methylpentane, 3,3-di-methylpentane and 3-ethylpentane among the investigated alkanes, although the Anti isomers (3a,4a,5a) did not complex with these alkanes. However, both the Anti-and Syn-isomers (2a and 2b) of the diethyleneoxy-bridged cryptophane showed selective complexing abilities for 2,2-dimethylbutane, 3,3-dimethylpentane, 2,2,3-trimethylbutane and 2,2,3,3-terramethybutane among the investigated alkanes.  相似文献   

3.
Rate constants for the gas-phase reactions of the Cl atom with a series of alkanes have been determined at 296 ± 2 K using a relative rate method. Using a rate constant for the Cl atom reaction with n-butane of 1.94 × 10?10 cm3 molecule?1 s?1, the rate constants obtained (in units of 10?11 cm3 molecule?1 s?1) were: 2-methylpentane, 25.0 ± 0.8; 3-methylpentane, 24.8 ± 0.6; cyclohexane, 30.8 ± 1.2; cyclohexane-d12, 25.6 ± 0.8; 2,4-dimethylpentane, 25.6 ± 1.2; 2,2,3-trimethylbutane, 17.9 ± 0.7; methylcyclohexane, 34.7 ± 1.2; n-octane, 40.5 ± 1.2; 2,2,4-trimethylpentane, 23.1 ± 0.8; 2,2,3,3-tetramethylbutane, 15.6 ± 0.9; n-nonane, 42.9 ± 1.2; n-decane, 48.7 ± 1.8; and cis-bicyclo[4.4.0]decane, 43.1 ± 0.8, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the n-butane rate constant. These data have been combined with rate constants obtained previously for ten C2? C7 alkanes and this entire data set has been used to develop an estimation method allowing the room temperature rate constants for the reactions of the Cl atom with alkanes to be calculated. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Relative rate experiments were used to measure ratios of chemical kinetics rate constants as a function of temperature for the reactions of OH with isobutane, isopentane, 2-methylpentane, 3-methylpentane, 2,3-dimethylbutane, 2,3-dimethylpentane, 2,4-dimethylpentane, 2,3,4-trimethylpentane, n-heptane, n-octane, cyclopentane, cyclohexane, and cycloheptane. The results have been used to calibrate a structure-reactivity rate constant estimation method for k(298 K) which, when combined with previously determined relationships between k(298 K) and the Arrhenius parameters, is capable of determining the temperature dependence accurately. The estimation method reproduces most of the observed rate data within experimental accuracy but appears to fail for 2,3-dimethylbutane, which has an anomalously high rate constant. Curvature in the Arrhenius plots at low temperatures is not present for compounds with a single type of C-H bond and, for compounds with different C-H bonds, is shown to be consistent with effects due to different group sites on the molecule.  相似文献   

5.
Relative rate constants for the gas-phase reactions of OH radicals with a series of alkyl nitrates have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10?12 cm3/molec·s, the rate constants obtained are (× 1012 cm3/molec·s): 2-propyl nitrate, 0.18 ± 0.05; 1-butyl nitrate, 1.42 ± 0.11; 2-butyl nitrate, 0.69 ± 0.10; 2-pentyl nitrate, 1.87 ± 0.12; 3-pentyl nitrate, 1.13 ± 0.20; 2-hexyl nitrate, 3.19 ± 0.16; 3-hexyl nitrate, 2.72 ± 0.22; 3-heptyl nitrate, 3.72 ± 0.43; and 3-octyl nitrate, 3.91 ± 0.80. These rate constants, which are the first reported for the alkyl nitrates, are significantly lower than those for the parent alkanes, and a formula, based on the numbers of the various types of C? H bonds in the alkyl nitrates, is derived for rate constant estimation purposes.  相似文献   

6.
In this study we present a global overview of the adsorption behavior of hexane isomers on MFI. With an experimental approach that couples a manometric technique with Near Infrared (NIR) spectroscopy, which has been recently developed, we did address adsorption kinetic properties of n-hexane, 2-methylpentane, 2,2-dimethylbutane and 2,3-dimethylbutane, and their binary mixtures. The adsorption equilibrium properties of the binary mixtures were also assessed using the same technique. Whereas the adsorption isotherms and heats of adsorption for single components have been studied by a manometric technique coupled with a micro calorimeter. The differential heats of adsorption of n-hexane increase slightly with loading, on the other hand the heat of adsorption of branched hexanes exhibits a decrease with loading. The diffusion rates on MFI of n-hexane, 2-methylpentane and 2,3-dimethylbutane are in the same order of magnitude. However, the diffusion rate of 2,2-dimethylbutane is two orders of magnitude lower than rates of the other isomers. In the binary mixtures the components interact and the difference between the diffusion rates of the components decreases. The MFI zeolite presents equilibrium selectivity towards the less branched isomers. In conclusion, a separation process for linear/mono-branched alkanes + double-branched alkanes, has to be based on its equilibrium properties and not based on adsorption kinetics.  相似文献   

7.
The irradiation of gaseous alkane mixtures under circulation conditions was used for the synthesis of liquid branched hydrocarbons. It was found that the synthesized liquid product was a mixture of alkanes with the average molecular weight higher than the molecular weight of the parent gas by a factor of 3–4. The resulting liquids were characterized by boiling range from 35 to 200°C in atmospheric distillation. The average degree of molecular branching in the synthesized liquids was evaluated on the basis of their knock resistance. The octane ratings of liquid mixtures were above 95 (motor octane number) or 103 (research octane number). The fractional composition and detonation properties of the synthesized liquids suggested the prevalence of C5–C11 isomers with highly branched structures in these liquids. Depending on irradiation conditions, 2,3-dimethylbutane, 2-methylpentane, or 3-methylpentane was predominant among hexanes. As a rule, 2,2,3-trimethylbutane and 2,3-dimethylpentane prevailed among heptanes.  相似文献   

8.
Using methyl nitrite photolysis in air as a source of hydroxyl radicals, relative rate constants for the reaction of OH radicals with a series of alkanes and alkenes have been determined at 299 ± 2 K. The rate constant ratios obtained are: relative to n-hexane = 1.00, neopentane 0.135 ± 0.007, n-butane 0.453 ± 0.007, cyclohexane 1.32 ± 0.04; relative to cyclohexane = 1.00, n-butane 0.341 ± 0.002, cyclopentane 0.704 ± 0.007, 2,3-dimethylbutane 0.827 ± 0.004, ethene 1.12 ± 0.05; relative to propene = 1.00, 2-methyl-2-butene 3.43 ± 0.13, isoprene 3.81 ± 0.17, 2,3-dimethyl-2-butene 4.28 ± 0.21. These relative rate constants are placed on an absolute basis using previous absolute rate constant data and are compared and discussed with literature data.  相似文献   

9.
Measurements of excess molar enthalpies at the temperature 298.15 K in a flow microcalorimeter are reported for the five binary mixtures formed by mixing 1-hexene with the branched alkanes: 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, and 2,2,4-trimethylpentane. Smooth Redlich–Kister representations of the results are described. It was found that the Liebermann–Fried model also provided good representations of the results.  相似文献   

10.
Relative rate constants for the reaction of OH radicals with a series of ketones have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of hydroxyl radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10?12 cm3 molecule?1 s?1, the rate constants obtained are (× 1012 cm3 molecule?1 s?1): 2-pentanone, 4.74 ± 0.14; 3-pentanone, 1.85 ± 0.34; 2-hexanone, 9.16 ± 0.61; 3-hexanone, 6.96 ± 0.29; 2,4-dimethyl-3-pentanone, 5.43 ± 0.41; 4-methyl-2-pentanone, 14.5 ± 0.7; and 2,6-dimethyl-4-heptanone, 27.7 ± 1.5. These rate constants indicate that while the carbonyl group decreases the reactivity of C? H bonds in the α position toward reaction with the OH radical, it enhances the reactivity in the β position.  相似文献   

11.
Rate constants of change transfer reactions kCT, involving C3? C9 alkanes and cycloalkanes, have been determined in an ion cyclotron resonance mass spectrometer. The rate constants are significantly lower than the corresponding rate constants for collision when the reaction is less than about 0.5 eV exothermic for linear alkane ions, or less than about 0.2 eV exothermic for cycloalkane ions. In this region of low reaction efficiency, the efficiency of reaction with linear or branched alkanes seems to depend primarily on reaction exothermicity. (The efficiencies of reaction of a given ion with cyclic alkanes also depend on ΔHrn, but are higher than for reactions with other compounds). Although the lowered reaction efficiencies probably result, at least in part, from unfavorable Franck–Condon factors in the energy range near the ionization onset, quantitative correlations between reaction efficiency and estimated relative Franck–Condon factors were not observed. When the enthalpy of reaction is small (less than about ?0.15 eV), it is seen that the reverse charge transfer can also occur, and equilibrium is established under the conditions of these experiments. From the observed equilibrium constants, values for the standard free energy change are derived, and assuming that ΔS is small for electron transfer equilibria, values of ΔHrn are estimated. In the case of the equilibria involving cyclohexane ion, these values of ΔHrn lead to estimates of the ionization potentials of methylcyclopentane, 3-methylpentane, n-octane, 2,2-dimethylbutane, and 2,3-dimethylbutane, which are lower than the ionization potentials of cyclohexane, that is, <9.88 eV, although all these compounds had previously been reported to have ionization potentials above 10.03 eV. That the ionization potentials are indeed lower than 10.03 eV is confirmed by determining the quantum yields of ionization with 10.03-eV photons. It is pointed out that the conclusions reached here apparently also apply to the charge transfer reactions of alkane ions in the liquid phase.  相似文献   

12.
Relative rate constants for the gas-phase reactions of OH radicals with a series of bi- and tricyclic alkanes have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10?12 cm3/molec·s, the rate constants obtained are (× 1012 cm3/molec·s): bicyclo[2.2.1]heptane, 5.53 ± 0.15; bicyclo[2.2.2]octane, 14.8 ± 1.0; bicyclo[3.3.0]octane, 11.1 ± 0.6; cis-bicyclo[4.3.0]nonane, 17.3 ± 1.3; trans-bicyclo[4.3.0]nonane, 17.8 ± 1.3; cis-bicyclo[4.4.0]decane, 20.1 ± 1.4; trans-bicyclo[4.4.0]decane, 20.6 ± 1.2; tricyclo[5.2.1.02,6]decane, 11.4 ± 0.4; and tricyclo[3.3.1.13,7]decane, 23.2 ± 2.1. These data show that overall ring strain energies of ?4–5 kcal mol?1 have no significant effect on the rate constants, but that larger ring strain results in the rate constants being decreased, relative to those expected for the strain-free molecules, by ratios which increase approximately exponentially with the overall ring strain.  相似文献   

13.
InI3 catalyzes the reaction of branched alkanes with methanol to produce heavier and more highly branched alkanes, which are more valuable fuels. The reaction of 2,3-dimethylbutane with methanol in the presence of InI3 at 180-200 degrees C affords the maximally branched C7 alkane, 2,2,3-trimethylbutane (triptane). With the addition of catalytic amounts of adamantane the selectivity of this transformation can be increased up to 60%. The lighter branched alkanes isobutane and isopentane also react with methanol to generate triptane, while 2-methylpentane is converted into 2,3-dimethylpentane and other more highly branched species. Observations implicate a chain mechanism in which InI3 activates branched alkanes to produce tertiary carbocations which are in equilibrium with olefins. The latter react with a methylating species generated from methanol and InI3 to give the next-higher carbocation, which accepts a hydride from the starting alkane to form the homologated alkane and regenerate the original carbocation. Adamantane functions as a hydride transfer agent and thus helps to minimize competing side reactions, such as isomerization and cracking, that are detrimental to selectivity.  相似文献   

14.
Using a relative rate method, rate constants have been measured at 296 ± 2 K for the gas‐phase reactions of OH radicals with 1,2‐butanediol, 2,3‐butanediol, 1,3‐butanediol, and 2‐methyl‐2,4‐pentanediol, with rate constants (in units of 10?12 cm3 molecule?1 s?1) of 27.0 ± 5.6, 23.6 ± 6.3, 33.2 ± 6.8, and 27.7 ± 6.1, respectively, where the error limits include the estimated overall uncertainty of ±20% in the rate constant for the reference compound. Gas chromatographic analyses showed the formation of 1‐hydroxy‐2‐butanone from 1,2‐butanediol, 3‐hydroxy‐2‐butanone from 2,3‐butanediol, 1‐hydroxy‐3‐butanone from 1,3‐butanediol, and 4‐hydroxy‐4‐methyl‐2‐pentanone from 2‐methyl‐2,4‐pentanediol, with formation yields of 0.66 ± 0.11, 0.89 ± 0.09, 0.50 ± 0.09, and 0.47 ± 0.09, respectively, where the indicated errors are the estimated overall uncertainties. Pathways for the formation of these products are presented, together with a comparison of the measured and estimated rate constants and product yields. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 310–316, 2001  相似文献   

15.
Widespread use of pesticides has caused serious environmental concern. In order to evaluate the fate of organic pesticides in the atmosphere, rate constants for gas phase reactions of OH radicals with dichlorvos, carbaryl, chlordimeform, and 2,4‐D butyl ester were measured using the relative rate method at ambient temperature and 101 kPa total pressure. On‐line FTIR spectroscopy was used to monitor the concentrations of pesticides as a function of time. The reaction rate constants with OH radicals (in units of cm3 molecule−1 s−1) have been determined as (2.0 ± 0.4) × 10−11 for dichlorvos, (3.3 ± 0.5) × 10−11 for carbaryl, (3.0 ± 0.7) × 10−10 for chlordimeform, and (1.5 ± 0.2) × 10−11 for 2,4‐D butyl ester. These rate constants agree well with those estimated based on the structure–activity relationship. The group rate constant for NC group (k(NC)) was estimated as 2.7 × 10−10 cm3 molecule−1 s−1. Dimethyl phosphite has been tentatively identified as a product of the reaction of dichlorvos with OH radicals. Atmospheric lifetimes due to the reactions with OH radicals were also estimated (in units of h): 14 ± 3 for dichlorvos, 8 ± 1 for carbaryl, 1.0 ± 0.3 for chlordimeform, and 19 ± 3 for 2,4‐D butyl ester. These short atmospheric lifetimes indicate that the four organic pesticides degrade rapidly in the atmosphere, and they themselves are unlikely to cause persistent pollution. Further studies are needed to identify the potential hazard of their degradation products. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 755–762, 2005  相似文献   

16.
The initiated oxidation of 2, 4-dimethylpentane in the neat liquid phase at 100°C with 760 torr O2 gives more than 90% of a mixture of 2,4-dihydroperoxy-2,4-dimethylpentane and 2-hydroperoxy-2, 4-dimethylpentane in a ratio of 7:1. The rate of oxidation depends closely on the [initiator]1/2, consistent with a mechanism in which chain termination occurs mostly by interactions of two 2-hydroperoxy-2, 4-dimethyl-4-pentylperoxy radicals. 2, 4-Dimethylpentane oxidizes only one sixth as fast as isobutane at the same rate of initiation at 100°C. In cooxidations of the same hydrocarbons, it is 0.71 as reactive as isobutane toward any of the peroxy radicals involved. 2, 4-Dimethylpentane oxidizes 7.5 times as fast at 1.25°C as at 50°C for the same rate of initiation, but the ratio of dihydroperoxide to monohydroperoxide increases only from 5 to 7, corresponding to a difference in activation energy between intramolecular and intermolecular abstraction of 1 kcal/mole. The overall activation energy (EpEt/2) is 10.7 kcal/mole, close to the value of 12 kcal/mole found for isobutane. Absolute values for Ep, Et, kp, kr, and kt were derived. Ring closure of 2-hydroperoxy-2, 4-methyl-4-pentyl radicals to oxetane, not detected during oxidation, was observed when this radical was generated at 100°C in the near-absence of oxygen. The ratio of rate constants for oxetane formation and addition of oxygen to the 2, 4dimethyl-2-hydroperoxy-4-pentyl radical is about 5.4 × 10?5 M at 100°C. Thus, ring closure to oxetane is too slow to compete with addition of oxygen above ?200 torr. At 100°C, 2, 3-dimethylbutane gave no evidence of any intramolecular abstraction. However, 2, 3-dimethylpentane did give at least 12% 2, 4-glycol or hydroxyketone.  相似文献   

17.
Relative rate constants for the gas-phase reactions of OH radicals with a series of cycloalkenes have been determined at 298 ± 2 K using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with isoprene of 9.60 × 10?11 cm3 molecule?1 s?1, the rate constants obtained were (X 1011 cm3 molecule?1 s?1): cyclopentene 6.39 ± 0.23, cyclohexene 6.43 ± 0.17, cycloheptene 7.08 ± 0.22, 1,3-cyclohexadiene 15.6 ± 0.5, 1,4 cyclohexadiene 9.48 ± 0.39, bicyclo[2.2.1]-2-heptene 4.68 ± 0.39, bicyclo[2.2.1] 2,5 heptadiene 11.4 ± 1.0, and bicyclo[2.2.2] 2 octene 3.88 ± 0.19. These data show that the rate constants for the nonconjugated cycloalkenes studied depend on the number of double bonds and the degree of substitution per double bond, and indicate that there are no obvious effects of ring strain energy on these OH radical addition rate constants. A predictive technique for the estimation of OH radical rate constants for alkenes and cycloalkenes is presented and discussed.  相似文献   

18.
Ethers are being increasingly used as motor fuel additives to increase the octane number and to reduce CO emissions. Since their reaction with hydroxyl radicals (OH) is a major loss process for these oxygenated species in the atmoshpere, we have conducted a relative rate study of the kinetics of the reactions of OH radicals with a series of ethers and report the results of these measurements here. Experiments were performed under simulated atmospheric conditions; atmospheric pressure (? 740 torr) in synthetic air at 295 K. Using rate constants of 2.53 × 10?12, and 1.35 × 10?11 cm3 molecule?1 s?1 for the reaction of OH radicals with n-butane and diethyl ether, the following rate constants were derived, in units of 10?11 cm3 molecule?1 s?1: dimethylether, (0.232 ± 0.023); di-n-propylether, (1.97 ± 0.08); di-n-butylether, (2.74 ± 0.32); di-n-pentylether, (3.09 ± 0.26); methyl-t-butylether, (0.324 ± 0.008); methyl-n-butylether, (1.29 ± 0.03); ethyl-n-butylether, (2.27 ± 0.09); and ethyl-t-butylether, (0.883 ± 0.026). Quoted errors represent 2σ from the least squares analysis and do not include any systematic errors associated with uncertainties in the reference rate constants used to place our relative measurements on an absolute basis. The implications of these results for the atmospheric chemistry of ethers are discussed.  相似文献   

19.
Using a relative rate technique, rate constants for the gas phase reactions of the OH radical with n-butane, n-hexane, and a series of alkenes and dialkenes, relative to that for propene, have been determined in one atmosphere of air at 295 ± 1 K. The rate constant ratios obtained were (propene = 1.00): ethene, 0.323 ± 0.014; 1-butene, 1.19 ± 0.06; 1-pentene, 1.19 ± 0.05; 1-hexene, 1.40 ± 0.04; 1-heptene, 1.51 ± 0.06; 3-methyl-1-butene, 1.21 ± 0.04; isobutene, 1.95 ± 0.09; cis-2-butene, 2.13 ± 0.05; trans-2-butene, 2.43 ± 0.05; 2-methyl-2-butene, 3.30 ± 0.13; 2,3-dimethyl-2-butene, 4.17 ± 0.18; propadiene, 0.367 ± 0.036; 1,3-butadiene, 2.53 ± 0.08; 2-methyl-1,3-butadiene, 3.81 ± 0.15; n-butane, 0.101 ± 0.012; and n-hexane, 0.198 ± 0.017. From a least-squares fit of these relative rate data to the most reliable literature absolute flash photolysis rate constants, these relative rate constants can be placed on an absolute basis using a rate constant for the reaction of OH radicals with propene of 2.63 × 10?11 cm3 molecule?1 s?1. The resulting rate constant data, together with previous relative rate data from these and other laboratories, lead to a self-consistent data set for the reactions of OH radicals with a large number of organics at room temperature.  相似文献   

20.
Relative rate constants for the reaction of OH radicals with a series of α,β-unsaturated carbonyls have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with propene of 2.52 × 10?11 cm3/molec·s, the rate constants obtained are (× 1011 cm3/molec·s: acrolein, 1.83 ± 0.13; crotonaldehyde, 3.50 ± 0.40; methacrolein, 2.85 ± 0.23; and methylvinylketone, 1.88 ± 0.14). These data, which are necessary input to chemical computer models of the NOx–air photooxidations of conjugated dialkenes, are discussed and compared with literature values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号