首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Solid-state 2H quadrupole echo nuclear magnetic resonance (NMR) spectra and measurements of 2H spin lattice relaxation times have been obtained for films of poly(p-phenylene vinylene) deuterated in phenylene ring positions (PPV-d4). NMR line shapes show that all the phenylene rings of PPV undergo 180° rotational jumps about the 1,4 ring axis (“ring flips”) at 225°C. The temperature dependence of the 2H line shapes show that the jump motion is thermally activated, with a median activation energy, Ea = 15 kcal/mol, and a distribution of activation energies of less than ±2 kcal/mol. The jump rate was also determined from the magnitude of the anisotropic T2 relaxation associated with 2H line shapes and from the curvature of inversion recovery intensity data. The experimental activation energy for jumps is comparable to the intramolecular potential barrier for rotation about phenylene vinylene bonds. 2H NMR provides a method for determining the phenylene-vinylene rotational barrier in pristine PPV, and may potentially be used to study conjugation in conducting films.  相似文献   

2.
The conformational behaviour of metoclopramide, a neuroleptic benzamide, and model compounds was investigated byt 1 H-NMR spectroscopy. An intramolecular amide-methoxy H-bond is shown to exist in CDCl3-solution, but not in D2O-solution, independently of the length and protonation state of the basic side-chain. This H-bond creates a virtual cycle which may be a key feature for the binding of neuroleptic benzamides to the dopamine receptor. The conformational behaviour of the aminoethyl side-chain is shown to be markedly condition-dependent. For metoclopramide and its analogues in their protonated form, the gauche- and trans- rotamers have identical energies in D2O-as well as in CDCl3-solutins. For the non-protonated molecules, the trans-rotamer is favoured in D2O-solutin, while the gauche-rotamer is favoured in CDCl3-solution (ΔG°?|0.5|kcal/mol in both cases). The side-chain conformation of neuroleptic benzamides is discussed in terms of receptor affinity.  相似文献   

3.
15N chemical shifts were measured in a series of anilinium fluorosulfonate salts and compared with chemical shift data from a comparable series of 15N-enriched aniline derivatives. A smaller overall range of nitrogen chemical shifts was observed for the protonated aniline series compared with that for the unprotonated anilines and is attributed to the elimination of nitrogen lone pair delocalization in the former series. Further-more, it was found that the range of nitrogen chemical shifts in the protonated anilines is determined primarily by substituent electronic effects from the ortho ring position with almost negligible contributions from the para position.  相似文献   

4.
Ab initio SCF molecular orbital calculations have been performed to ascertain the conformational preferences of protonated, neutral, and deprotonated amidine [HC(?NH)NH2], using the 3-21G split valence basis set. The states of eight stable species, eight transition states, and four higher-order saddle points have been determined by complete geometry optimization utilizing analytic energy gradient techniques. Protonation at the amidine ?NH is preferred over the –NH2 site by 37.1 kcal/mol. Neutral amidine has rotational barriers of 9.6 and 11.7 kcal/mol for the HN?CN cis and trans isomers, respectively, while all the stable HC(NH2)2+ and HC(NH)2? species possess torsional barriers larger than 23 kcal/mol. There is, however, essentially free C—N single-bond rotation in HC(?NH)NH3+, the calculated barriers being 0.7 and 1.8 kcal/mol for the cis and trans HN?CN isomers, respectively.  相似文献   

5.
13C and 15N NMR chemical shift and spin–lattice relaxation data have been measured for both meso- and racemic-pentane-2,4-diamine. At high pH (12), relaxation is consistent with hindered rotation of the NH2 group due, in part, to the formation of intramolecular hydrogen bonds. At low pH (2), relaxation is consistent with relatively unhindered rotation of the NH3+ group. Rotational jump rates and barriers are reported, determined from the NT1 ratios between 15N and 13C nuclei. In all cases, the ratios for the racemic diastereomer are higher than those of the meso compounds; this is interpreted in terms of conformationally more stable intramolecular hydrogen bond formation in the meso compound. Chemical shifts for the diastereomeric amines show that 15N shifts move downfield on protonation along with methyl and methylene carbons, while the methine carbon resonances move upfield.  相似文献   

6.
In this work, the solution conformations of seventeen 3,7-diacyl bispidines were studied by means of NMR spectroscopy including VT NMR experiments. The acyl groups included alkyl, alkenyl, aryl, hetaryl, and ferrocene moieties. The presence of syn/anti-isomers and their ratios were estimated, and some reasons explaining experimental facts were formulated. In particular, all aliphatic and heterocyclic units in the acylic R(CO) fragments led to an increased content of the syn-form in DMSO-d6 solutions. In contrast, only the anti-form was detected in DMSO-d6 and CDCl3 in the case when R = Ph, ferrocenyl, (R)-myrtenyl. In the case of a chiral compound derived from the natural terpene myrtene, a new dynamic process was found in addition to the expected inversion around the amide N-C(O) bond. Here, rotation around the CO-C=C bond in the acylic R fragment was detected, and its energy was estimated. For this compound, ΔG for amide N-C(O) inversion was found to be equal to 15.0 ± 0.2 kcal/mol, and for the rotation around the N(CO)–C2′ bond, it was equal to 15.6 ± 0.3 kcal/mol. NMR analysis of the chiral bispidine-based bis-amide was conducted for the first time. Two X-ray structures are reported. For the first time, the unique syn-form was found in the crystal of an acyclic bispidine-based bis-amide. Quantum chemical calculations revealed the unexpected mechanism for amide bond inversion. It was found that the reaction does not proceed as direct N-C(O) bond inversion in the double-chair (CC) conformation but rather requires the conformational transformation into the chair–boat (CB) form first. The amide bond inversion in the latter requires less energy than in the CC form.  相似文献   

7.
In the title compounds, C6H5NH3+·H2PO3? and C6H5NH3+·C2HO4?·0.5H2O, the NH3+ groups of the anilinium ion are ordered at room temperature. The rotation of these groups along the N—Caryl bond, which is often observed at room temperature in other anilinium compounds, is prevented by hydrogen bonds between the NH3+ group and the anions. In both compounds, the geometry of the cation is significantly distorted from D6h to a symmetry close to C2v. The angle ipso to the substituent is significantly larger than 120°, as expected from the σ‐electron‐withdrawing character of the NH3+ group.  相似文献   

8.
Calculations at several levels of ab initio molecular orbital theory have been carried out on 20 polycyclic aryl nitrenium ions of general structure ArNH+ and containing from two to four condensed rings. Electronic interactions between the aryl ring and the NH+ group stabilize all ions relative to PhNH+ by amounts varying from 14 to 40 kcal mol−1 depending on the ring system and on the site of substitution. Apart from a few symmetrical cases, the ions exist in distinct syn and anti configurations, separated by substantial inversion barriers. At the HF/6‐31G(d) level, the latter are predicted to lie in the rather narrow range of 27.8±2.0 kcal mol−1. Simple PMO analyses are presented based on the analogy with odd alternant hydrocarbon cations. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 231–243, 1999  相似文献   

9.
The barriers to internal rotation about the N? C bond of formamide and the formamide–H2O complex have been examined by ab initio quantum chemistry methods. Both self-consistent field and correlated approaches have been utilized to determine the geometries, energies, and local harmonic vibrational frequencies of the minimum-energy and transition-state structures of these two systems. We find that formamide's rotation barrier of 14–15 kcal/mol is increased to 16–18 kcal/mol when a single H2O molecule is attached. This result contrasts with the effect of a single H2O solvent molecule on the barrier to tautomerization of formamide (to form formamidic acid HN? CHOH) for which a barrier lowering of ca. 20 kcal/mol has been observed. The rotation barriers obtained for formamide and for its H2O complex are compared with barriers obtained experimentally in various solvents. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The structures of α-X-cyclopropyl and α-X-isopropyl radicals (X = H, CH3, NH2, OH, F, CN, and NC) are reported at the RHF 3-21G level of theory. The isopropyl radicals are pyramidal with out-of-plane angles varying from 12° (X = CN) to 39° (X = NH2), and barriers to inversion ranging from 0.4 kcal/mol (X = H) to 4.0 kcal/mol (X = NH2). The cyclopropyl radicals have larger out-of-plane angles, from 39.9° (X = CN) to 49.4° (X = NH2), and their barriers to inversion, which increase with the inclusion of polarization functions, vary from 5.5 kcal/mol (X = H) to 16.7 kcal/mol (X = F). In both types of radicals the amino group is the most stabilizing substituent, while the α-fluoro has little effect. The β-fluoro group is weakly destabilizing in the cyclopropyl radical. The strain energies of the cyclopropyl radicals (36–43 kcal/mol) are compared with those of similarly substituted anions, cations, and cyclopropanes.  相似文献   

11.
Investigations on Aromatic Amino-Claisen Rearrangements The thermal and acid catalysed rearrangement of p-substituted N-(1′,1′-dimethylallyl)anilines (p-substituent=H (5) , CH3 (6) , iso-C3H7 (7) , Cl (8) , OCH3 (9) , CN (10) ), of N-(1′,1′-dimethylallyl)-2,6-dimethylaniline (11) , of o-substituted N-(1′-methylallyl)anilines (o-substituent=H (12) , CH3 (13) , t-C4H9 (14) , of (E)- and (Z)-N-(2′-butenyl)aniline ((E)- and (Z)- 16 ), of N-(3′-methyl-2′-butenylaniline (17) and of N-allyl- (1) and N-allyl-N-methylaniline (15) was investigated (cf. Scheme 3). The thermal transformations were normally conducted in 3-methyl-2-butanol (MBO), the acid catalysed rearrangements in 2N -0,1N sulfuric acid. - Thermal rearrangements. The N-(1′,1′-dimethylallyl)anilines rearrange in MBO at 200-260° with the exception of the p-cyano compound 10 in a clean reaction to give the corresponding 2-(3′-methyl-2′-butenyl)anilines 22–26 (Table 2 and 3). The amount of splitting into the anilines is <4% ( 10 gives ? 40% splitting). The secondary kinetic deuterium isotope effect (SKIDI) of the rearrangement of 5 and its 2′,3′,3′-d3-isomer 5 amounts to 0.89±0.09 at 260° (Table 4). This indicates that the partial formation of the new s?-bond C(2), C(3′) occurs already in the transition state, as is known from other established [3,3]-sigmatropic rearrangements. The rearrangement of the N-(1′-methylallyl)anilines 12–14 in MBO takes place at 290–310° to give (E)/(Z)-mixtures of the corresponding 2-(2′-Butenyl)anilines ((E)- and (Z)- 30,-31 , and -32 ) besides the parent anilines (5–23%). Since a dependence is observed between the (E)/(Z)-ratio and the bulkiness of the o-substituent (H: (E)- 30 /(Z)- 30 =4,9; t-C4H9: (E)- 32 /(Z)- 32 =35.5; cf. Table 6), it can be concluded, that the thermal amino-Claisen rearrangement occurs preferentially via a chair-like transition state (Scheme 22). Methyl substitution at C(3′) in the allyl chain hinders the thermal amino-Claisen-rearrangement almost completely, since heating of (E)-and (Z)- 16 , in MBO at 335° leads to the formation of the expected 2-(1′-methyl-allyl) aniline (33) to an extent of only 12 and 5%, respectively (Scheme 9). The main reaction (?60%) represents the splitting into aniline. This is the only observable reaction in the case of 17 . The inversion of the allyl chain in 16 - (E)- and (Z)- 30 cannot be detected - indicated that 33 is also formed in a [3, 3]-sigmatropic process. This is also true for the thermal transformation of N-allyl- (1) and N-allyl-N-methylaniline (15) into 2 and 34 , respectively, since the thermal rearrangement of 2′, 3′, 3′-d3- 1 yields 1′, 1′, 2′-d3- 2 exclusively (Table 8). These reaction are accompanied to an appreciable extent by homolysis of the N, C (1′) bond: compound 1 yields up to 40% of aniline and 15 even 60% of N-methylaniline ((Scheme 10 and 11). The activation parameters were determined for the thermal rearrangements of 1, 5, 12 and 15 in MBO (Table 22). All rearrangements show little solvent dependence (Table 5, 7 and 9). The observed ΔH values are in the range of 34-40 kcal/mol and the ΔS values very between -13 to -19 e.u. These values are only compatible with a cyclic six-membered transition state of little polarity. - Acid catalysed rearrangements. - The rearrangement of the N-(1′, 1′-dimethylallyl) anilines 5-10 occurs in 2N sulfuric acid already at 50-70° to give te 2-(3′-methyl-2′-butenyl)anilines 22-27 accompanied by their hydrated forms, i.e. the 2-(3′-hydroxy-3′-methylbutyl) anilines 35-40 (Tables 10 and 11). The latter are no more present when the rearrangement is conducted in 0.1 N sulfuric acid, whilst the rate of rearrangement is practically the same as in 2 N sulfuric acid (Table 12). The acid catalysed rearrangements take place with almost no splitting. The SKIDI of the rearrangement of 5 and 2′, 3′, 3′-d3- 5 is 0.84±0.08 (2 N H2SO4, 67, 5°, cf. Table 13) and thus in accordance with a [3,3]-sigmatropic process which occurs in the corresponding anilinium ions. Consequently, the rearrangement of a 1:1 mixture of 2′, 3′, 3′-d3- 5 and 3, 5-d2- 5 in 2 N sulfuric acid at 67, 5° occurs without the formation of cross-products (Scheme 13). In the acid catalysed rearrangement of the N-1′-methylallyl) anilines 12-14 at 105-125° in 2 N sulfuric acid the corresponding (E)- and (Z)-anilines are the only products formed (Table 14 and 15). Again no splitting is observed. Furthermore, a dependence of the observed (E)/(Z) ratio and the bulkiness of the o-substituent ( H : (E)/(Z)- 30 = 6.5; t- C 4 H 9: (E)- 32 /(Z)- 32 = 90; cf. Table 15) indicates that also in the ammonium-Claisen rearrangement a chair-like transition state is preferentially adopted. In contrast to the thermal rearrangement the acid catalysed transformation in 2 N-O, 1 N sulfuric acid (150-170°) of (E)- and (Z)- 16 as well as of 1 and 15 , occurs very cleanly to yield the corresponding 2-allylated anilines 33, 2 and 34 (Scheme 15 and 18). The amounts of the anilines formed by splitting are <2%. During longer reaction periods hydration of the allyl chain of the products occurs, and in the case of the rearrangement of (E)- and )Z)- 16 the indoline 45 is formed (Scheme 15 and 18). All transformations occur with inversion of the allyl chain. This holds also for the rearrangement of 1 , since 3′, 3′-d2- 1 gives only 1′, 1′-d2- 2 (Scheme 17). The activation parameters were determined for the acid catalysed rearrangement of 1, 5, 12 and 15 in 2 N sulfuric acid (Table 22). The ΔH values of 27-30 kcal-mol and the ΔS values of +9 to -12 e.u. are in agreement with a [3, 3]-sigmatropic process in the corresponding anilinium ions. The acceleration factors (kH+/kΔ) calculated from the activation parameters of the acid catalysed and thermal rearrangements of the anilines are in the order of 105 - 107. They demonstrate that the essential driving force of the ammonium-Claisen rearrangement is the ‘delocalisation of the positive charge’ in the transition state of these rearrangements (cf. Table 23). Solvation effects in the anilinium ions, which can be influenced sterically, also seem to play a role. This is impressively demonstrated by N-(1′, 1′-dimethylallyl)-2, 6-dimethylaniline (11) : its rearrangement into 4-(1′, 1′-dimethylallyl)-2, 6-dimethylaniline (43) cannot be achieved thermally, but occurs readily at 30° in 2 N sulfuric acid. From a preparative standpoint the acid catalysed rearrangement in 2 N-0, 1 N sulfuric acid of N-allylanilines into 2-allylanilines, or if the o-positions are occupied into 4-allylanilines, is without doubt a useful synthetic method (cf. also [17]).  相似文献   

12.
Crystals of the title salt, [(C6H5NH3)]+·[(HOOC(CH2)CH(OH)COO)] or C6H8N+·C4H5O5, are built up from protonated anilinium residues and monodissociated dl ‐malate ions. The NH3+ group of the anilinium cation is ordered at room temperature. Rotation of the NH3+ group along the C(aromatic)—Nsp3 bond (often observed at room temperature in other anilinium salts) is prevented by N—H⋯O hydrogen bonds between the NH3+ group and the malate anions. The anions are connected by four O—H⋯O hydrogen bonds into two‐dimensional sheets parallel to the (001) plane. The charged moieties, i.e. the anilinium cations and the sheets of hydrogen‐bonded malate anions, form two‐dimensional layers in which the phenyl rings of the anilinium residues lie perpendicular to the malate‐ion sheets. The conformation of the monodissociated malate ion in the crystal is compared with that obtained from ab initio molecular‐orbital calculations.  相似文献   

13.
The analysis of the hydration of NH4+ and the estimation of relative or absolute free energies of hydration by means of Monte Carlo computer simulations using different 1-6-12 potential functions is reported. Two electrostatic representations of NH4+ (used respectively by W.L. Jorgensen and P.A. Kollman) in conjunction with two common water models (TIP3P and TIP4P) are considered. A change in relative hydration free energies of 1.7 kcal/mol is found when the NH4+ models are mutated into each other in either TIP3P or TIP4P. The NH4+ → Na+ mutation in both solvent models leads to similar but overestimated relative hydration energies of about ?28.7 kcal/mol. Similarly, the NH4+ annihilation significantly overestimates the absolute free energy of hydration.  相似文献   

14.
Dynamic NMR of 1,3,5-tris(trifluoromethylsulfonyl)-1,3,5-triazinane reveals two dynamic processes: ring inversion leading to equilibrium between two degenerate rotamers of Cs symmetry (ΔG = 13.5 kcal/mol), and rotation about the S-N bond leading to equilibrium between the Cs (more stable) and C3v (2.12 kcal/mol less stable) rotamers (ΔG = 13.0 kcal/mol).  相似文献   

15.
Amides and carbamates present an energetic barrier associated to N? C(O) bond rotation, which determines two different equilibrium geometries. In this work, the conformational equilibrium of formanilide, acetanilide, methyl and t‐butyl phenylcarbamates, and their N‐methylderivatives was studied by AM1 and B3LYP/6‐31G(d,p) calculations. The effect of aryl p‐substituents (MeO, Me, Cl, Br, CN, and NO2) was also studied. Amide barriers were found by DFT calculation between 12 and 21 kcal/mol. Carbamates, on the other hand, showed barriers between 11 and 15 kcal/mol. AM1 underestimates the energetic barriers and provides values around half those obtained by B3LYP/6‐31G(d,p) calculations. Electron withdrawing substituents on aryl group decrease the barrier. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

16.
13C chemical shifts for several series of cis- and trans-N-alkylimines and oxaziridines bearing para-substituted C-phenyl rings are reported and correlated with dual substituent parameters. The 13C?N and oxaziridine ring carbon shifts correlate primarily with the inductive/field parameters, σ1, whereas both resonance and inductive terms generally contribute about equally to the long-range substituent effects on alkyl side-chain chemical shifts. Correlations on diastereoisomeric imines show that the transmission of substituent effects can be significantly affected by the EZ configuration. Aromatic carbon chemical shifts in imines are discussed in relation to the EZ configuration and the conformation around the aryl—imino bond.  相似文献   

17.
Upfield substituent-induced 13C chemical shifts for aryl carbons of polymethyl substituted benzenes, phenols, anilines and thiophenols were investigated as a function of the proximity between substituents X and CH3 (X = CH3, NH2, OH and SH). The results indicate that the induced shifts of the substituted aryl carbons are, in general, independent of the polar substituent but depend on the number of adjacent substituted aryl carbons. A ?2.0 ppm upfield shift was found for a substituted aryl carbon adjacent to one substituted aryl carbon and a ?3.8 ppm upfield shift for a substituted aryl carbon bound by two substituted aryl carbons. It is suggested that the near additivity of the upfield shifts is the result of changes in the bond order between the aromatic ring carbons in the region of the substituted aryl carbons due to distortion of the ring. The 13C chemical shifts of the methyl substituents for methyl substituted phenols, anilines and thiophenols were determined, and it was found that the values could be predicted from the additivity parameters reported for the analogous methylbenzenes plus an additional pair-interaction term associated with the through-space electronic influence of the heteroatom.  相似文献   

18.
M. Branik  H. Kessler 《Tetrahedron》1974,30(6):781-786
Z, E-Isomerism of the urethane bond of t-BOC-glycine was observed by 1H- and 13C-NMR spectroscopy at various temperatures in several solvents. The special stabilization of the Z isomer at low temperatures in CDCl3 has been explained by intra- and intermolecular H-bond forming a 7-membered ring. Thermodynamic data have been determined for the ground state (AH°= ?7 kcal/mol, Δ° = ?25 Clausius) as well asfor the barrier of interconversion (ΔG° = 15·4 kcal/mole for the deuterated title compound) in CDCl3. The equilibrium between the Z and the E conformation is shifted towards the E conformation in more polar solvents (acetonitril-d3, acetone-d6, DMSO-d6), in which cyclization of the Z conformation is not important.  相似文献   

19.
The first observation of barriers to rotation about the CarylCcarbene bonds in aryl-substituted metal carbene complexes is reported. Using variable temperature 1H NMR, barriers of 9.1 and 10.4 kcal/mol have been determined for Cp(CO)2FeCHC6H5+ and Cp(CO)2FeCH(p-CH3C6H4)+, respectively. The data clearly indicate a geometry of the complex in which the aryl ring lies coplanar with FeCcarbeneCipso plane.  相似文献   

20.
Reactions of a hydrogen molecule with a ZnO surface are studied by an ab initio method. For simulating the ZnO (10 1 0) surface, one ZnO molecule both with and without a Madelung potential is used. Since the electrostatic potential due to the ionic layer decreases exponentially, the effect of the layers deeper than the second one can be neglected. The Madelung potential is, therefore, expressed by the 32 point charges of ±0.5 situated on the first and second layers. Several low-lying states of ZnO and the ZnO + H2 system have been calculated by the symmetry-adapted cluster (SAC ) and SAC –CI methods. It is found that the 1Σ+ state of ZnO is the ground state and catalytic active and the other states are inactive. ZnO (1Σ+) reacts with H2 and dissociatively adsorbs it with making Zn? H and O? H bonds. This occurs both with and without the Madelung potential. Without the Madelung potential, the heat of reaction is 81.3 kcal/mol and the reaction barrier is 14.0 kcal/mol. With the Madelung potential, the heat of reaction decreases to 73.5 kcal/mol and the barrier decreases to 11.5 kcal/mol. The mechanism of this reaction is the electron donation from the 2pπ orbital of O to the antibonding σu MO of H2 and the back-donation from the bonding σg MO of H2 to the LUMO of ZnO. In the intermediate stage of the reaction, the dipole of ZnO works to increase the overlap of the active MOS to make the reaction easier. Throughout the reaction, the in-plane 2pπ orbital of O and the HOMO of ZnO are inactive and work to keep the ZnO bond stable during the catalytic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号