首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-Ray Crystal-Structure Analysis of 2,4,6-Tri(tert-butyl)phenyllithium · N,N,N′,N′-Tetramethylpropane-1,2-diamine: a Monomeric Organolithium Compound Tri(tert-butyl)phenyllithium is an important reagent for the preparation of derivatives of main-group elements with low coordination state as well as a highly hindered base for the generation of amine-free Li-enolates. Its monomeric nature in solution was previously deduced from NMR measurements. While Et2O, THF, and N,N,N′,N′-tetramethylethylene-1,2-diamine (tmen) led to crystalline samples which were not suitable for structure analysis, the N,N,N′,N′-tetramethylpropane-1,2-diamine (tmpn) gave good single crystals of the title compound from Et2O/hexane (disorder along the two-fold crystallographic axis running through Li? C(1) and C(4) of the Ph ring. The structure (Fig. 1, Table 1) has some remarkable features: (i) it is one of the very few monomeric organolithium compounds so far, (η1-Li on aromatic ring); (ii) it has the rare trigonal-planar coordination of the Li-atom; iii) there are close contacts between the Li-atom arid one of the Me groups in each ortho-position (Fig. 3). The internal angle on the Ph-ring ipso-C-atom is 114°. This angle as well as those of the other known phenyllithium (Table 2), -magnesium, and -aluminum structures are included in a plot of ipso-angles against Pauling electronegativities (Fig. 2).  相似文献   

2.
The N,N,N′,N′,N″‐pentamethyl‐N″‐(trifluorosilylmethyl)phosphoric triamide O?P(NMe2)2N(Me) CH2SiF3 with intramolecular P?O→Si coordination was formed by the reaction of N,N,N′,N′,N″‐pentamethyl‐N″[(triethoxysilyl)methyl]phosphoric triamide with BF3·Et2O. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In the new tin(IV) and copper(II) complexes, cis‐dichlorido‐trans‐dimethyl‐cis‐bis(N,N′,N′′‐tricyclohexylphosphoric triamide‐κO)tin(IV), [Sn(CH3)2Cl2(C18H36N3OP)2], (I), and trans‐diaquabis(N,N′,N′′‐tricyclohexylphosphoric triamide‐κO)copper(II) dinitrate–N,N′,N′′‐tricyclohexylphosphoric triamide (1/2), [Cu(C18H36N3OP)2(H2O)2](NO3)2·2C18H36N3OP, (II), the N,N′,N′′‐tricyclohexylphosphoric triamide (PTA) ligands exist as hydrogen‐bonded dimers via P=O...H—N interactions around the metal center. The asymmetric unit in (I) consists of one complete complex molecule located on a general position. The SnIV coordination geometry is octahedral with two cis hydrogen‐bonded PTA ligands, two cis chloride ligands and two trans methyl groups. The asymmetric unit in (II) contains one half of a [Cu(PTA)2(H2O)2]2+ dication on a special position (site symmetry for the Cu atom), one nitrate anion and one free PTA molecule, both on general positions. The complex adopts a square‐planar trans‐[CuO2O2] coordination geometry, with the CuII ion coordinated by two PTA ligands and two water molecules. Each of the noncoordinated PTA molecules is hydrogen bonded to a neighboring coordinated PTA molecule and an adjacent water molecule; the phosphoryl O atom acts as a double‐H‐atom acceptor. The P atoms in the PTA ligands of both complexes and in the noncoordinated hydrogen‐bonded molecules in (II) adopt a slightly distorted tetrahedral environment.  相似文献   

4.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

5.
An easily prepared tetraphosphine N,N,N′,N′‐tetra(diphenylphosphinomethyl)‐1,2‐ethylenediamine (1) combined with PdCl2 affords an efficient catalytic system for Suzuki cross‐coupling of aryl and heteroaryl bromides. A high turnover number of 750 000 is obtained with the catalyst loading as low as 1 ppm. This catalyst system exhibits good stability and longevity. In this study, a broad scope of substrates is investigated and satisfactory yields are obtained. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The title compound, N,N,N′,N′‐tetra­methyl­ethyl­enedi­ammon­ium di­aqua­(arsenate)­(hydrogen arsenate)­dizinc(II), (C6H18N2)0.5[Zn2(AsO4)(HAsO4)(H2O)2], is a new zincoarsenate obtained by hydro­thermal synthesis. The structure consists of infinite two‐dimensional anionic layers alternating with planes containing centrosymmetric organic diprotonated template N,N,N′,N′‐tetra­methyl­ethyl­enedi­ammonium cations, [H3N­C6H12NH3]2+. The latter are interconnected to the framework through hydrogen bonds.  相似文献   

7.
The title complex, bis[μ3cisN‐(2‐aminopropyl)‐N′‐(2‐carboxylatophenyl)oxamidato(3−)]‐1:2:4κ7N,N′,N′′,O:O′,O′′:O′′′;2:3:4κ7O′′′:N,N′,N′′,O:O′,O′′‐bis(2,2′‐bipyridine)‐2κ2N,N′;4κ2N,N′‐dichlorido‐1κCl,3κCl‐tetracopper(II) dihydrate, [Cu4(C12H12N3O4)2Cl2(C10H8N2)2]·2H2O, consists of a neutral cyclic tetracopper(II) system having an embedded centre of inversion and two solvent water molecules. The coordination of each CuII atom is square‐pyramidal. The separations of CuII atoms bridged by cisN‐(2‐aminopropyl)‐N′‐(2‐carboxylatophenyl)oxamidate(3−) and carboxyl groups are 5.2096 (4) and 5.1961 (5) Å, respectively. A three‐dimensional supramolecular structure involving hydrogen bonding and aromatic stacking is observed.  相似文献   

8.
Triethylgermylation of sulfacetamide occurs on the sulfonamido nitrogen in competition with the 1,2 addition of the starting triethylgermyl dimethylamine on the carbonyl group. Thermal decomposition in the presence of dimethylamine yields N‐triethylgermylsulfanilamide. Stable 1:1 sulfacetamide–DBU and 1:1 sulfacetamide–Et3N complexes were isolated and fully characterized in the course of dehydrochlorination reactions. o‐Sulfonamidophenylamine yields N,N′‐bis‐triethylgermylated derivatives, whereas o‐(N,N‐dimethylsulfonamido)phenylamine leads to monogermylated compounds. The N‐dimethylaminodimesitylgermyl derivative is thermally stable. Dehydrohalogenation of the N‐dimesitylfluorogermyl compound leads to the thermally stable but water sensitive N‐[o‐(N′,N′‐dimethylsulfonamido)phenyl]‐N‐dimesitylgermaimine. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Synthesis and Structure of N,N,N?,N?‐Tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and Dimethanol‐bis(N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thioureato))dicobalt(II) The synthesis and the crystal structure of the ligand N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and its CoII‐complex are reported. The ligand co‐ordinates quadridentately forming a di‐bischelate. The donor atoms O and S are arranged in cis‐position around the central CoII ions. In addition the co‐ordination geometry is determined by methanol molecules resulting in the co‐ordination number five. The complex crystallizes in the space group P1 (Z = 1) with two additional methanol molecules per formula unit. The free ligand crystallizes in the space group P1 (Z = 2) with one methanol molecule per formula unit. It shows the typical keto form of N‐acylthioureas with a protonated central N atom. The structures of both acylthiourea fragments come close to E,Z′‐configurations.  相似文献   

10.
The title complex, bis­(acetyl­acetonato‐κ2O,O′)[N,N′‐bis(3‐hydroxy‐2‐oxidobenzaldimino)‐2‐methyl‐1,2‐propane­di­amine‐κ4N,O,O′,N′]­uranium(IV) tetra­hydro­furan solvate, [U(C18H18N2O4)(C5H7O2)2]·C4H8O, is a rare example of a uranium(IV) complex with a compartmental Schiff base. The U atom is located in the N2O2 inner site of the hexadentate N,N′‐bis(3‐hydroxy‐2‐oxidobenzaldimino)‐2‐methyl‐1,2‐pro­pane­di­amine group and is bound also to the two O atoms of both acetyl­acetonate moieties, which results in a dodecahedral coordination environment. Centrosymmetric dimers are formed through intermolecular hydrogen bonds that link the terminal uncoordinated hydroxy groups to one another and to the O atoms of the acetyl­acetonate ligands.  相似文献   

11.
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well.  相似文献   

12.
The crystal and molecular structures of N‐benzoyl‐N′,N′‐dibutylselenourea (HL), C16H24N2OSe, and the corresponding complex bis(N‐benzoyl‐N′,N′‐dibutylselenoureato‐κ2Se,O)palladium(II), [Pd(C16H23N2OSe)2], are reported. The selenourea molecule is characterized by intermolecular hydrogen bonds between the selenoamidic H atom and the Se atom of a neighbouring molecule forming a dimer, presumably as a consequence of resonance‐assisted hydrogen bonding or π‐bonding co‐operativity. A second dimeric hydrogen bond is also described. In the palladium complex, the typical square‐planar coordination characteristic of such ligands results in a cis‐[Pd(LSe,O)2] complex.  相似文献   

13.
1, 3‐Diaminobenzene reacts readily with PPh2Cl to give N, N, N′, N′‐tetrakis(diphenylphosphanyl)‐1, 3‐diaminobenzene ( 1 ) in excellent yield. The dinuclear complex [1, 3‐{cis‐Mo(CO)4(PPh2)2N}2C6H4] ( 2 ) is obtained in high yield from 1 and cis‐[Mo(CO)4(NCEt)2]. Compounds 1 and 2 were characterized by NMR spectroscopy (1H, 13C, 31P) and by crystal structure determination. The latter shows the formation of a bis‐chelate complex with Mo‐P‐N‐P four‐membered rings.  相似文献   

14.
The new bis(amide) derivatives of DTPA (diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid), diethylenetriamine-N,N′,N″-triacetic-N,N″-bis(benzylamide) (DTPA-BBA) have been synthesized. The crystal structure of gadolinium(III) complex of DTPA-BBA ([Gd(DTPA-BBA)]) has been determined by X-ray crystallography: C28H52GdN5O17, Mw = 889 g mol?1, space group $ {\rm P}\bar 1 $ (#2) (triclinic), a = 12.645(4), b=14.125(8), c = 12.623(4) Å, α = 111.60(3), β = 114.79(3), γ = 88.39(4)°, V = 1881(1) Å3, Z = 2, Dx = 1.569 g/cm3, λ(Mo Kα) =0.71069 Å, μ = 18.44 cm?1, final R = 0.047, Rw = 0.046 for 3755 independent observed reflections at 23 °C. The coordination sphere of Gd(III) comprises three amine nitrogens, two amide oxygens, three carboxylic acid oxygens, and one water. The relaxivity of Gd(III) complex was determined to be R1 = 4.08(4) and R2 = 6.06(5) dm3 mmol?1 s?1 at pH = 7.0, 20 MHz, and 37(1) °C. Additionally, the R1 relaxivity for Gd(III) chelate was found to be invariant with respect to pH changes over the range of 2-10. This indicates that a constant inner-sphere hydration number is associated with the [Gd(DTPA-BBA)] complex. Hence the high stability of the complex is demonstrated.  相似文献   

15.
The title compound, aqua­chloro{2,2′‐[1,2‐ethanediyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4O,N,N′,O′}manganese(III),[MnCl(C16H14N2O2)(H2O)], is a neutral manganese(III) complex with a pseudo‐octahedral metal centre. The equatorial plane comprises the four donor atoms of the tetradentate Schiff base ligand [Mn—O 1.886 (4) and 1.893 (4) Å, and Mn—N 1.978 (5) and 1.982 (5) Å], with a water mol­ecule [Mn—O 2.383 (4) Å] and a Cl? ligand [Mn—Cl 2.4680 (16) Å] completing the coordination sphere. The distorted geometry is highlighted by the marked displacement of the MnIII ion out of the least‐squares plane of the four Schiff base donor atoms by 0.165 (2) Å. These monomeric MnIII centres are then linked into a polymeric array via hydrogen bonds between the coordinated water mol­ecule and the phenolic O‐atom donors of an adjacent MnIII centre [O—H?O 2.789 (5) and 2.881 (5) Å].  相似文献   

16.
In the title potential O,N,N′,O′‐tetradentate Schiff base ligand {systematic name: 2,2′‐[pentane‐1,5‐diylbis(nitrilomethylidyne)]diphenol}, C19H22N2O2, the mutual orientation of the three planar fragments determines the conformation of the molecule. The dihedral angles between the planes of the two salicylidene groups and the plane of the central extended pentane chain are 78.4 (2) and 62.0 (3)°, and the angle between the terminal ring planes is 55.4 (1)°. Strong intramolecular O—H...N hydrogen bonds close almost‐planar six‐membered rings, and the O—H bonds are elongated as a result of hydrogen‐bond formation.  相似文献   

17.
A novel ligand, N,N,N′,N′,N″‐penta (methyl acrylate) diethylenetriamine (MA5‐DETA), was synthesized by the reaction of diethylenetriamine with methyl acrylate in almost quantitive yield. The polymerizations of methyl methacrylate with MA5‐DETA as the ligand and α,α‐dichlorotoluene (DCT) and ethyl 2‐bromoisobutyrate (2‐EBiB) as the initiators, respectively, under different conditions were examined. The polymerization with CuCl/MA5‐DETA/DCT was closely controlled in bulk and gave polymers with quite narrow molecular weight distributions (Mw/Mn's) of 1.16–1.29. The polymerization with the system CuBr/MA5‐DETA/EBiB in bulk gave high activity. However, the system was not well controlled and gave the polymers with Mw/Mn = 1.35–1.53. The solution polymerization in anisole with CuBr/MA5‐DETA/EBiB showed a better‐controlled nature. Moreover, the addition of CuBr2 into the aforementioned system can further improve its controllability. The Mw/Mn's of the resulting polymers ranged from 1.11 to 1.21. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1963–1969, 2004  相似文献   

18.
A kinetic study has been carried out on the oxidation of N, N, N′, N′,-tetraethyl-p-phenylenediamine (TEPD) by metal ion like Ce4+, oxoanions viz., MnO4? and Cr2O72?; peroxides such as peroxomonosulphate (PMS), peroxodisulphate (PDS), and H2O2; and halogens namely Cl2, Br2, and I2. The fast kinetics of the formation and decay of the radical cation TEPD˙+ have been analyzed at 565 nm by the stopped-flow technique under pseudo-first-order conditions. From the kinetic data, it has been inferred that the reactions were found to be of first-order with respect to [TEPD] and [oxidant] but over all it has been of second-order. The observed second-order rate constants in both the formation and decay of TEPD˙+ has been correlated with the oxidation potentials of the various oxidants employed in this study. The effect of pH on the oxidation has been investigated in the formation and decay of TEPD˙+ as well as reduction studies have also been carried out using dithionite which has been found to regenerate the TEPD from the TEPD˙+ and the corresponding rate constant has also been determined. Besides these, this article also explains how the TEPD, which forms TEPD˙+ acts as a better electron relay than TMPD(N, N, N′, N′-tetramethyl-p-phenylenediamine) which forms TMPD˙+, even though both of them undergo one-electron oxidation and are used in the chemical routes to solar energy conversions. The observed rate constants for electron transfer were correlated theoretically using Marcus theory. The observed and calculated rate constants have good correlation. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Reaction of N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide), C20H18F2N4O2, ( LF ), with zinc chloride and mercury(II) chloride produced different types and shapes of neutral coordination complexes, namely, dichlorido[N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide)‐κ2N,O]zinc(II), [ZnCl2(C20H18F2N4O2)], ( 1 ), and dichlorido[N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide)‐κ4O,N,N′,O′]mercury(II), [HgCl2(C20H18F2N4O2)], ( 2 ). The organic ligand and its metal complexes are characterized using various techniques: IR, UV–Vis and nuclear magnetic resonance (NMR) spectroscopies, in addition to powder X‐ray diffraction (PXRD), single‐crystal X‐ray crystallography and microelemental analysis. Depending upon the data from these analyses and measurements, a typical tetrahedral geometry was confirmed for zinc complex ( 1 ), in which the ZnII atom is located outside the bis(benzhydrazone) core. The HgII atom in ( 2 ) is found within the core and has a common octahedral structure. The in vitro antibacterial activities of the prepared compounds were evaluated against two different bacterial strains, i.e. gram positive Bacillus subtilis and gram negative Pseudomonas aeruginosa bacteria. The prepared compounds exhibited differentiated growth‐inhibitory activities against these two bacterial strains based on the difference in their lipophilic nature and structural features.  相似文献   

20.
The Trihydrochloride Monohydrate of N -(Pyrid-2-ylmethyl)ethylenediamine- N , N′ , N′ -triacetic Acid and its Lanthanum(III) Complex We report the results of the investigation of N-(pyrid-2-ylmethyl)ethylenediamine-N,N′,N′-triacetic acid (H3pedta) and its complexes with rare earth metal ions. The X-ray crystal structures of H3pedta · 3 HCl · H2O and of the lanthanum(III) complex [La(pedta)(H2O)] · 2 H2O were determined. The complex forms a polymer, lanthanum(III) has coordination number 10, one water molecule is coordinated. The water degradation of H3pedta · 3 HCl · H2O and of the complex was investigated by thermoanalysis. Luminescence studies of the corresponding europium(III) complex in aqueous solution show three coordinated water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号