首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oriented superstructure of poly(vinylidene fluoride) is controlled by using a forced-quenching type of zone drawing apparatus. Systematic variation of the weight fraction χ(I) of form-I crystals and the orientation function fa of amorphous chains shows that the piezoelectricity increases with increasing χ(I) and fa. A change in the state of molecular aggregation during poling is also effective in increasing the piezoelectricity and the orientation of the crystal b axis along the poling direction. Equations relating piezoelectricity to the form-I crystallinity, the orientation of amorphous chains, and the orientation of the crystal b axis along the poling direction are derived. These are based on a mechanical model having regions of taut tie molecules in parallel with composite regions consisting of crystalline and amorphous blocks in series.  相似文献   

2.
An equation has been developed for the study of the kinetics of polymer crystallization at high pressures using differential scanning calorimetry (DSC) in the dynamic mode of operation. The activation energy for the crystallization of isotactic polybutene-1 (PB-1) has been determined to be ca. 20 kcals/mol; this has been attributed to the transport of chain segments to the site of crystallization. The melting behavior of form-I PB-1 crystals has been studied by using a high-pressure differential thermal analyzer (DTA) setup and high-pressure DSC. The melting temperature Tm does not show any significant change with pressure in the low-pressure region up to 1.2 kbar; beyond this point a large increase in Tm with pressure was observed. This unusual low-pressure behavior of PB-1 has been attributed to formation of intermediate form I′, which has a lower melting point than form I.  相似文献   

3.
The effects of drawing temperature on the physical and mechanical properties of poly(p-phenylene sulfide) have been studied. A melt-quenched film was drawn by solid-state coextrusion both below (75°C) and above (95 and 110°C) the glass transition temperature Tg (85°C) of PPS. The maximum extrusion draw ratio (EDRmax) increased from 3.4 to 5.6 with increasing extrusion temperature Te from 75 to 110°C. It was found that extrusion drawing just above the Tg of PPS (95°C) produced more stress-induced crystals. A high efficiency of draw in the amorphous region was achieved by extrusion at Te-75°C. The tensile modulus at EDRmax decreased from 5.1 to 3.5 GPa with increasing Te from 75 to 110°C. The low efficiency of draw for the samples extruded at 110°C is explained in terms of disentanglement and chain slippage during drawing due to a less effective network.  相似文献   

4.
Magnetic susceptibility (χ) measurements on FeOCl are reported. The data were obtained on single crystals over the temperature range 7–400 K. A small but distinct singularity at the Neel temperature TN ≈ 84 K was observed; extensive short-range ordering above TN was also evident from these data. The present work suggests that the intrinsic χ(T) of FeOCl was masked by magnetic impurities in the two previous χ studies of this compound.  相似文献   

5.
6.
Differential scanning calorimetry (DSC) studies show that poly(ethylene oxide) (PEO) exhibits three transition regions below its melting point. The effects of annealing on the intensity and temperature of these transitions enable us to locate T < Tg (Tγ) Tg, and Tα at about 130–140. 190–240, and 263–313°K, respectively. Our results argue for a small transition Tg (L) at 190–200°K with a second Tg (U) above 233°K, the temperature of which increases on annealing. The shape of DSC derivative curves reveals that T < Tg and Tα are complex and suggests the possibility of two steps in these processes. In addition, a splitting of Tα is observed every time a multiple melting endotherm appears as a result of annealing. Up to three separate melting endotherms can be observed. One of them is related to the normal primary crystallization process. Its peak temperature increases linearly with the annealing temperature, yielding an extrapolated value for the equilibrium melting temperature T of 347°K as found before.  相似文献   

7.
The ferroelectric and piezoelectric properties of melt-quenched unoriented poly(vinylidene fluoride-trifluoroethylene) (73 : 27) copolymer films as a function of the number of poling cycles have been studied. The investigation revealed that quenched films exhibit a decrease in D-E hysteresis behavior as the number of poling cycles increases when the samples are poled at room temperature. Corresponding decreases in remanent polarization, Pr, as well as small increases in the coercive field, Ec, were observed as the material was subjected to successive poling cycles. The piezoelectric coefficients, d31 and e31, also decreased as the number of poling cycles increased. In addition, a clear reduction in the “apparent” Curie transition temperature between unpoled and poled material was observed. Preliminary evidence indicates that films quenched from the melt to below Tc do not form a stable ferroelectric crystal phase as previously believed. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2671–2679, 1997  相似文献   

8.
The molecular structure of [1.1.1]propellane has been determined from single-crystal X-ray diffraction measurements at 138 K. The crystals of this reactive compound were grown from the melt at ca. 263 K. The space group is C2, and the asymmetric unit contains four molecules. All have large thermal motion and two show orientational disorder as well. Because of these problems, the atomic positions cannot be determined with high accuracy. Within the experimental limits, the two ordered molecules have D3h symmetry, with corrected lengths of central and side bonds of ca. 1.60 Å and 1.53 Å, respectively. At lower temperature, the crystals undergo a phase transition. The transition temperature, in the range of 100 to 132 K, varied from one crystal sample to another. All crystals obtained of the low-temperature phase were twinned, and its space group could not be established.  相似文献   

9.
An annealing scheme for semicrystalline polymers is presented whereby a polymer is annealed in its solid-melt region, leading to crystals approaching the equilibrium crystals in terms of melting temperature. The annealing data is mathematically treated to estimate the equilibrium melting temperature (T0m) of polymer crystals. As is the case with any extrapolation procedure, there are minor shortcomings with our approach, but these are far outweighed by the advantages; the latter are exemplified by a comparison with the widely used Hoffman-Weeks method for estimating (T0m). The validity of our annealing scheme for the estimation of (T0m) is demonstrated by analysis of well-studied polymers such as nylon 6, polyethylene terephthalate (PET), polyethylene (PE), polypivalolactone (PPL), and polytetrafluoroethylene (PTFE); other polymers studied include polyether ether ketone (PEEK) and nylon 4,6.  相似文献   

10.
Small-angle light-scattering (SALS), Polarized light microscopy (PLM), differntial scanning calorimetry (DSC), and small-angle x-ray scattering (SAXS) were used to study morphological changes in segmented polyurethanes with 4,4′-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD) as the hard segment. It was found. for the first time, that spherulites could form from the melt by quenching the polyurethanes in the melt state to annealing temperatures between 120°C and Th, the highest annealing temperature for spherulite formation. Th ranged from 140°C to ca. 170°C and depended upon the hard-and soft-segment compatibility. Within the range 120°C to Th, the radius of the spherulite increased with increasing hard-segment content at each fixed annealing temperature. Annealing at 135–140°C gave rise to the largest spherulites. SAXS was used to investigate the phase-separated structures corresponding to the spherulite formation. The interdomain spacing increased with increasing hard-segment content and with increasing annealing temperature.The degree of phase separation first increased with increasing annealing temperature from room temperatures (ca. 25°C), reached a maximum at ca. 107°C, and then decreased with further increase in the annealing temperature. On the basis of these observations, the mechanisms of phase separation, crystallization, and spherulite formation are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
The heat capacity and the enthalpy increments of strontium metaniobate SrNb2O6 were measured by the relaxation method (2-276 K), micro DSC calorimetry (260-320 K) and drop calorimetry (723-1472 K). Temperature dependence of the molar heat capacity in the form C pm=(200.47±5.51)+(0.02937±0.0760)T-(3.4728±0.3115)·106/T 2 J K−1 mol−1 (298-1500 K) was derived by the least-squares method from the experimental data. Furthermore, the standard molar entropy at 298.15 K S m0 (298.15 K)=173.88±0.39 J K−1 mol−1 was evaluated from the low temperature heat capacity measurements. The standard enthalpy of formation Δf H 0 (298.15 K)=-2826.78 kJ mol−1 was derived from total energies obtained by full potential LAPW electronic structure calculations within density functional theory.  相似文献   

12.
Nanoparticles of the spin-crossover coordination polymer [FeL(bipy)]n were synthesized by confined crystallization within the core of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymer micelles. The 4VP units in the micellar core act as coordination sites for the Fe complex. In the bulk material, the spin-crossover nanoparticles in the core are well isolated from each other allowing thermal treatment without disintegration of their structure. During annealing above the glass transition temperature of the PS block, the transition temperature is shifted gradually to higher temperatures from the as-synthesized product (T1/2↓=163 K and T1/2↑=170 K) to the annealed product (T1/2↓=203 K and T1/2↑=217 K) along with an increase in hysteresis width from 6 K to 14 K. Thus, the spin-crossover properties can be shifted towards the properties of the related bulk material. The stability of the nanocomposite allows further processing, such as electrospinning from solution.  相似文献   

13.
We report dielectric relaxation and Rayleigh-Brillouin spectroscopic measurements on the side chain polymer poly(n-hexylmethacrylate), PHMA (Tg = 268 K), exhibiting a broad glass transition region. The dielectric loss curves can be represented by single Havriliak-Negami functions in the temperature range of 260–450 K. The width of the distribution relaxation function is a decreasing function of temperature up to T = 333 K ≊ 1.24 × Tg and remains virtually constant above that temperature. This is interpreted as marking the merging of the α-process with a slow β-relaxation in agreement with the value of the cooperativity length associated with the α-mode. Hence above that temperature, the relaxation times confirm well to an Arrhenius temperature dependence. The hypersonic dispersion deduced from the Brillouin spectra (210–550 K) surprisingly peaks at temperatures near Tg which bears no relation to the main α-relaxation. This structural relaxation is rather associated with the side hexyl group motion showing striking resemblance with the hypersonic dispersion in molecular liquids. It is conceivable that the observed damping in PHMA is dynamically related to the internal plasticization effect of the hexyl group. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Solid-state coextrusion has been used to prepare uniaxially drawn films from isotropic poly(ethylene 2,6-naphthalate) (PEN) of a minimum degree of crystallinity (ca. 5%) both below and above its glass transition temperature Tg. The onset of cold crystallization (Tc) of the drawn films has been studied as a function of the extrusion temperature (ET) and the draw ratio (EDR). It has been shown that Tc decreases markedly on draw, as much as 95°C, and, at constant draw ratio Tc goes through a minimum in the Tg region. For undrawn PEN, annealing below 153°C has no significant effect on Tc. To evaluate the crystallization rate constant (k) and the activation energy (Ea) of the drawn specimens, a nonisothermal DSC procedure has been used. With increasing EDR, k increases markedly and Ea goes down over threefold compared with the undrawn polymer. At high ET, strain-induced crystallization has also been shown to play an important role in lowering Ea for cold crystallization. Thermal shrinkage above Tm indicates a high elastic recovery, underlining the efficiency of deformation, ca. 93%, achieved by solid-state coextrusion.  相似文献   

15.
Dissociation rates of molecular hydrogen in electrical discharges have been calculated at different electron (Te) and gas (Tg) temperatures (10000 Te 23000 K, 500 Tg 4000 K), at different pressures p (5 p 50 torr) and electron number densities ne (0 ne 1012 cm−3).The results have been obtained by solving a system of master equations, including V---T (vibration-translation), V---V (vibration---vibration) and e---V (electron---vibration) microscopic processes.The results obtained at ne ≠ O show a “laser-type mechanism” in the dissociation of molecular hydrogen in electrical discharges. In particular one notices a strong increase of dissociation rates with decreasing gas temperature and pressure.The results show that this mechanism is as important as the mechanism of direct dissociation by electron impact.  相似文献   

16.
We have used combinations of light, heat, and electrostatic fields to investigate the orientation of nonlinear azo-chromophores chemically incorporated into high glass transition temperature (Tg) polyimides. A number of nonlinear optical polyimides have been synthesized in which the interaction between the nonlinear optical chromophore and the polymer main chain was systematically altered to determine to what extent this steric interaction influences the orientation of the nonlinear chromophore. Chromophores in polymers may be oriented by a number of methods: (a) polarized light at room temperature (i.e., photo-induced orientation or PIO), (b) polarized light and electric fields (i.e., photo-assisted poling or PAP) at temperatures ranging from room temperature to the polymer Tg, and (c) electric fields at Tg (thermal poling). While thermal poling and PIO are usually possible, PAP depends strongly on the molecular structure of the polymer. Previously we have shown that PIO can be accomplished at room temperature in a system where the nonlinear chromophore is embedded into the polyimide main chain via the donor substituent, and this orientation can only be thermally erased at temperatures approaching Tg. In this article we show that, whereas photoisomerization can efficiently depole donor-embedded polyimides in a matter of few minutes at room temperature, PAP does not induce any polar order. This behavior is in marked contrast to a structurally related, side-chain, nonlinear polyimide, in which the azo chromophore is tethered via a flexible linkage to the polymer backbone. In this case some PAP occurs even at room temperature, while no PAP is observed for a donor-embedded system with a similar Tg. We suggest that the orientation during PAP below Tg in the side-chain polyimide is primarily due to the movement of the azo side chains, and there is a very little coupling of this motion to the main chain. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1669–1677, 1998  相似文献   

17.
Proton NMR relaxation times T1, T1?, and T2 are reported for the compounds HTaO3 and HNbO3 in the temperature range 170–540 K. The data show that for both compounds two types of motion occur. Proton diffusion occurs in both compounds above 400 K with a correlation time, τ0c, of ~30 ps and an activation energy of ~50 kJ mole?1, approximately twice that for the localized process occurring at lower temperatures. Alternating current conductivity measurements have been used to study proton diffusion above 470 K in these compounds.  相似文献   

18.
Nanoparticles of the spin‐crossover coordination polymer [FeL(bipy)]n were synthesized by confined crystallization within the core of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer micelles. The 4VP units in the micellar core act as coordination sites for the Fe complex. In the bulk material, the spin‐crossover nanoparticles in the core are well isolated from each other allowing thermal treatment without disintegration of their structure. During annealing above the glass transition temperature of the PS block, the transition temperature is shifted gradually to higher temperatures from the as‐synthesized product (T1/2↓=163 K and T1/2↑=170 K) to the annealed product (T1/2↓=203 K and T1/2↑=217 K) along with an increase in hysteresis width from 6 K to 14 K. Thus, the spin‐crossover properties can be shifted towards the properties of the related bulk material. The stability of the nanocomposite allows further processing, such as electrospinning from solution.  相似文献   

19.
《Thermochimica Acta》2003,401(2):169-173
The heat capacity and the heat content of gallium nitride were measured by calvet calorimetry (320-570 K) and by drop calorimetry (670-1270 K), respectively. The temperature dependence of the heat capacity in the form Cpm=49.552+5.440×10−3T−2.190×106T−2+2.460×108T−3 was derived by the least squares method. Furthermore, thermodynamic functions calculated on the basis of our experimental results and literature data on the molar entropy and the heat of formation of GaN are given.  相似文献   

20.
In this study, we examine the effects of heating, nucleation, cooling, and reheating on the thermal properties and structure of metallocene isotactic polypropylene (m‐iPP) that had been prepared initially in a standard state containing nearly equal amounts of the crystallographic α and γ phases. Heat treatment was achieved through partial melting and annealing by the heating of samples to self‐nucleation temperatures (Tn's) that spanned and exceeded the entire range of melting of the standard state, from 122 to 160 °C. The relative amounts of α and γ crystals are determined from the area under the unique wide‐angle X‐ray reflections. The lower and upper endotherms are caused by the melting of γ and α crystals, respectively. Four distinct regions of Tn were identified on the basis of the thermal and structural parameters of m‐iPP. In region I, Tn is below the peak melting temperature of the γ phase. Here, γ crystals are annealed and α crystals are barely affected by Tn. In region II, Tn is above the peak of the lower endotherm but below the peak of the upper endotherm. γ crystals melt, and α crystals anneal. In both regions I and II, the portion of the sample melted at Tn recrystallizes epitaxially with existing parent α lamellae as the substrates, and the amount of α always exceeds the amount of γ. In region III, Tn is above the peak of the upper endotherm, and all γ crystals and some or all α crystals are melted at Tn. The number of α‐crystal nuclei steadily decreases as Tn increases, causing systematic depression of the crystallization and melting temperatures seen during cooling. Finally, in region IV, Tn exceeds the upper endotherm, and only small self‐nuclei or heterogeneous nuclei remain. Recrystallization is now suppressed to lower temperatures. For regions III and IV, a crossover behavior in the relative amounts of α and γ is observed during cooling from Tn. Because of the effective nucleating ability of α toward γ, as the temperature drops, the amount of γ increases and then exceeds the amount of α. With subsequent reheating, the reverse crossover occurs because of the lower melting point of γ. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1644–1660, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号