首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In an attempt to modify fibrous protein, poly(vinyl acetate) has been graft copolymerized onto Himachali wool in an aqueous medium by using Fenton's reagent as redox initiator. Graft copolymerizations were carried out at 25, 30, 35, 40, and 45°C for a period of 3 hr. Percentage grafting was found to be dependent upon reaction temperature, concentration of monomers, and the molar ratio of [H2O2]/[Fe+2]. Maximum grafting occurred at 45°C with a molar ratio of [H2O2]/[Fe+2] = 1.43. A small amount of grafting (2.6–2.8%) occurred when grafting was effected at 45°C in the presence of Fe+2 alone.  相似文献   

2.
The radical graft copolymerization of vinylpyridine derivatives onto acetyl cellulose was investigated using Fe2+/H2O2 redox system as an initiator. It was proved that the addition of hydrazine hydrate increased the degree of grafting many times. The reaction mechanism of hydrazine hydrate was also investigated. A. correlation between nitrogen content and the total anion exchange capacity was established. The vinylpyridine derivatives were ordered according to their reactivity. The effects of reaction conditions on the total anion-exchange capacity, the total conversion, the degree of grafting, and the grafting efficiency of the copolymers obtained were examined. The copolymers were characterized by IR and H-NMR spectra, thermogravimetric analysis, elemental analysis, and total anion-exchange capacity.  相似文献   

3.
Poly(methyl methacrylate) has been grafted onto chitosan by using Fenton's reagent as a redox initiator in an aqueous medium. Initiation by Fenton's reagent was carried out in the presence of atmospheric oxygen. The percentages of grafting, efficiency, and homopolymer were found to depend on chitosan (RchitOH), ferrous ammonium sulfate (FAS), hydrogen peroxide, monomer (MMA) concentrations, reaction temperature, and reaction time.  相似文献   

4.
Graft copolymerization of methyl methacrylate onto lignosulfonate in aqueous medium was investigated. It was found that the H2O2–Fe(II) redox system is very effective for the grafting (Ea = 4.4 kcal/mole). The H2O2/Fe2+ ratio was the most important factor in the graft copolymerization and characteristics of the resultant graft copolymers. In most cases, polymerization for 100 min at 30°C was enough to obtain 80% conversion and 50–60% grafting efficiency. The resultant polymer mixture was subjected to extraction alternately with acetone and water, and the graft copolymer was isolated free from homopolymer and unreacted lignosulfonate. With increasing H2O2/Fe2+ ratio, the grafting ratio showed a maximum at 4, whereas the yield of graft copolymer and number of poly(methyl methacrylate) branches for every building unit of lignosulfonate increased up to a ratio of 4, both values, however, remaining constant above 4. The graft copolymer obtained for the case H2O2/Fe2+ = 4 consisted of one part of lignosulfonate and five parts of poly(methyl methacrylate). The number of branches in the graft copolymer was 6 × 10?3/OCH3 or one every 167 guaiacyl nuclei.  相似文献   

5.
Graft copolymerization of methacrylic acid (MetAc) onto potato starch using H2O2/Fe++ redox system was investigated. The best conditions of the grafting reaction were determined and several variables were studied: initiator and monomer concentrations, time, and temperature. Percent grafting efficiency, percent grafting, percent grafted monomer conversion, and total conversion were obtained. The optimum graft yield was obtained at 7.3 × 10?3M H2O2 concentration and it was favored by increasing the methacrylic acid concentration and reaction time.  相似文献   

6.
Controlled grafting of MMA onto cellulose and cellulose acetate   总被引:1,自引:0,他引:1  
Homogeneous graft copolymerization of methyl methacrylate onto cellulose and cellulose acetate was carried out in various solvents and solvent systems taking ceric ammonium nitrate, tin (II) 2-ethyl hexanoate [Sn(Oct)2] and benzoyl peroxide as initiators. The effect of solvents, initiators, initiator and monomer concentration, on graft yield, grafting efficiency and total conversion of monomer to polymer were studied. Formation of Ce3+ ion during grafting in presence of CAN enhances the grafting efficiency. Methylene blue was used as a homopolymer inhibitor and controlled the molecular weight of the grafted polymer and its effect on grafting was also studied. In presence of MB, amount of PMMA homopolymer formation reduced and consequently grafting efficiency increased. The number average molecular weights and polydispersity indices of the grafted PMMA were found out by gel permeation chromatography. The products were characterized by FTIR and 1H-NMR analyses and possible reaction mechanisms were deduced. Finally, thermal degradation of the grafted products was also studied by thermo-gravimetric and differential thermo-gravimetric analyses.  相似文献   

7.
For the first time, the time dependence of [H2O2] and [Fe2+] was followed during the aerobic oxidation of ethanol by Fenton's reagent. It was found that part of the ethanol was oxidized by dissolved O2 via the transient formation of H2O2. A model was set up based on FeO2+ as the key intermediate. Both one‐ and two‐equivalent oxidations of ethanol occur, the former producing radical species derived from ethanol. No free radicals derived from H2O2 play part in the system. The relevant rate constants or their ratios were determined. The mechanism accounted successfully also for the anaerobic oxidation of ethanol. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 541–553, 2008  相似文献   

8.
In this study, a novel polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)‐grafted poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP‐g‐PVBSA), has been successfully prepared by simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a FEP film and taking subsequent chemical modification steps to modify the benzyl chloride moiety to the benzyl sulfonic acid moiety. The chemical reactions for the sulfonation were carried out via the formation of thiouronium salt with thiourea, base‐catalyzed hydrolysis for the formation of thiol, and oxidation with hydrogen peroxide. Each chemical conversion process was confirmed by FTIR, elemental analysis, and SEM‐EDX. A chemical stability study performed with Fenton's reagent (3% H2O2 solution containing 4 ppm of Fe2+) at 70 °C revealed that FEP‐g‐PVBSA has a higher chemical stability than the poly(styrene sulfonic acid)‐grafted membranes (FEP‐g‐PSSA). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 563–569, 2010  相似文献   

9.
Degradation of acridine orange (AO) in aqueous solution by Fenton's reagent (Fe2+ and H2O2) was investigated. The effects of different reaction parameters such as initial AO concentration, pH value of solution, ferrous concentration, hydrogen peroxide concentration, and the presence of chloride ion on the oxidative degradation of AO were investigated. Under optimum conditions, 2 mM H2O2, 0.4 mM Fe2+ and pH 3.0, the initial 0.2 mM AO solution was reduced by 95.8% within 10 min. The primary intermediates of the degradation reaction of AO were identified. The analytical results indicated that the N‐de‐methylation degradation of AO dye took place in a stepwise manner to yield mono‐, di‐, tri‐, and tetra‐N‐de‐methylated AO species generated during the Fenton process. The probable degradation pathways were proposed and discussed.  相似文献   

10.
Abstract

The feasibility of grafting poly(methyl acrylate) and poly[1-(methoxycarbonyl) ethylene] onto chitosan, poly-β(1←-4)-2-amino-2-deoxy-d-glucose, was investigated. The grafting reaction was carried out in aqueous solution by using ferrous ammonium sulfate (FAS) in combination with H2O2 as redox initiator. The effects of such reaction variables as chitosan, monomer and initiator concentrations, reaction time, and reaction temperature were determined. Through this study the grafting reaction could be optimized. The grafting yield reached its maximum value of 332% when 0.3 g chitosan was copolymerized with 3 mL monomer at 70°C for 120 minutes with [FAS] = 6 × 10?5 M, [H2O2] = 6 × 10?3 M, and 8 mL water. The grafted chitosan was found to be insoluble in solvents for chitosan and solvents for poly(methyl acrylate), but did show swelling in dilute acetic acid, methanol, acetone, and in an ethanol/2% acetic acid 1:1 mixture. The thermal stability of chitosan and grafted chitosan were studied by dynamic thermogravimetric analysis. The results show that the graft copolymer is thermally more stable than pure chitosan. The overall activation energy for graft copolymerization was estimated to be 32.8 kcal/mol.  相似文献   

11.
Graft copolymerization of methyl methacrylate (MMA) onto Himachali wool fiber has been investigated in aqueous medium by using γ irradiation from a 2100 Ci60CO source as means of initiation. Graft copolymerization was carried out by the mutual method in nitrogen atmosphere as well as in air. Effect of mineral acids and acetic acid on percentage of grafting was studied. Percentage of grafting was determined as functions of total dose, concentration of monomer, and concentration of acids. Maximum percentage of grafting in the presence of acids occurred in nitrogen atmosphere at a total dose of 1.05 MR. All the acids were found to influence grafting and the reactivity of different acids towards graft copolymerization was found to follow the order: H2SO4 > HCl > HNO3 > HC1O4 > HOAc. An attempt has been made to explain the reactivity order of different acids in the light of the mechanism proposed for γ-irradiation-induced graft copolymerization of vinyl monomer onto wool fiber.  相似文献   

12.
We report here the electrocatalytic reduction of oxygen on thin anthraquindisulfonate (AQDS)/poplypyrrole (PPy) composite film modified electrodes and its application to the electrooxidation of azo dye‐amaranth. The polymer‐coated cathode exhibited good electrocatalytic activity towards oxygen reduction reaction (ORR), and allowed the formation of strong oxidant hydroxyl radical (.OH) in the medium via Electro‐Fenton's reaction between cathodically generated H2O2 and added or regenerated Fe2+. The electrochemical behaviors of ORR in various pH solutions were described using cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometric (CA) techniques. The effect of solution pH on amaranth mineralization by the Fe2+/H2O2 and Fe3+/H2O2 electrooxidation systems was studied. In addition, the long‐term electrocatalytic activity and stability of the AQDS/PPy composite film during multiple experimental runs were also examined electrochemically.  相似文献   

13.
In order to ascertain the effect of a donor monomer, vinyl acetate (VAc), on the graft copolymerization of acceptor monomers, ethyl acrylate (EA) and butyl acrylate (BA), grafting of mixed vinyl monomers (EA + VAc) and (BA + VAc) was carried out on Himachali wool in aqueous medium using ceric ammonium nitrate (CAN) as a redox initiator. Graft copolymerization was carried out at different temperatures for various reaction periods. Percent grafting and percent efficiency were determined as functions of 1) concentration of mixed vinyl monomers, 2) concentration of CAN, 3) concentration of HNO3 4) temperature, and 5) reaction time. VAc, the donor monomer, was found to decrease percent grafting of EA and BA onto wool.  相似文献   

14.
Dissolving pulp and its partially xanthated derivative were grafted with styrene, using either the Fe2+?K2S2O8 redox system of potassium persulfate alone as initiators. The conversion of styrene to both copolymer and homopolymer was found to be influenced by agitator speed. The effect of stirring was much more pronounced with the xanthated substrate in that a welldefined conversion maximum was observed at the same agitation speed for both total polymer and copolymer. Grafting onto dissolving pulp with the redox initiator also showed a maximum, but a maximum total polymer and maximum copolymer were located at different agitator speeds. Grafting of styrene onto dissolving pulp initiated by potassium persulfate was almost independent of stirring in the 0–910 rpm range.  相似文献   

15.
In order to initiate a comprehensive study of graft copolymerization of vinyl monomers onto soluble protein-gelatin, we have studied grafting of ethyl acrylate (EA) and methyl methacrylate (MMA) onto gelatin using eerie ammonium nitrate (CAN) and eerie ammonium sulfate (CAS) as the redox initiator in an aqueous medium. A small amount of mineral acid (HNO3 with CAN and H2SO4 with CAS) was found to catalyze the graft copolymerization. Graft copolymerization reactions were carried out at different temperatures. Maximum grafting occurred at 65°C both with EA and MMA. Percentage grafting has been determined as function of 1) concentration of monomer (EA and MMA), 2) concentration of initiator (CAN and CAS), 3) concentration of acid (HNO3 and H2SO4), 4) time, and 5) temperature.  相似文献   

16.
Methyl methacrylate (MMA), methyl acrylate (MA), and ethyl acrylate (EA) have been graft copolymerized onto wool fiber in aqueous medium using the chromium acetylacetonate-tertiary-butyl hydroperoxide (Cr(acac)3-TBHP) system as initiator. The percentage of grafting has been determined as a function of the concentrations of monomer, chelate, and TBHP, and the time and temperature under optimum conditions. MMA produced a maximum grafting of 119.8%, MA produced a maximum grafting of 56%, while EA afforded maximum grafting to the extent of 41.9%. Different vinyl monomers were found to follow the following reactivity order toward grafting onto wool fiber in the presence of the Cr(acac)3-TBHP system: MMA > MA > EA.  相似文献   

17.
Functional polymer‐grafting silica nanoparticles hold great promise in diverse applications such as molecule recognition, drug delivery, and heterogeneous catalysis due to high density and uniform distribution of functional groups and their tunable spatial distance. However, conventional grafting methods from monomers mainly consist of one or more extra surface modification steps and a subsequent surface polymerization step. A monomer protonation‐dependent surface polymerization strategy is proposed to achieve one‐step uniform surface grafting of cross‐linked poly(4‐vinylpyridine) (P4VP) onto core–shell Fe3O4@SiO2 nanostructures. At an approximate pH, partially protonated 4VP sites in aqueous solution can be strongly adsorbed onto deprotonated silanol groups ( Si O) onto Fe3O4@SiO2 nanospheres to ensure prior polymerization of these protonated 4VP sites exclusively onto Fe3O4@SiO2 nanoparticles and subsequent polymerization of other 4VP and divinylbenzene monomers harvested by these protonated 4VP monomers onto Fe3O4@SiO2 nanoparticles, thereby achieving direct grafting of cross‐linked P4VP macromolecules onto Fe3O4@SiO2 nanoparticles.  相似文献   

18.
Well-defined low-molecular-weight polystyrene was grafted onto cellulose acetate in a homogeneous solution. The grafting was performed by esterifying the free hydroxyls in the cellulose acetate (acetyl DS 2.5) with anionically prepared polystyrene having a carboxylic acid group at one end of the chain. The carboxylic acid end group of the polystyrene was activated by either conversion to the corresponding acid chloride, or by reaction with trifluoroacetic anhydride. Pyridine and the more active 4-dimethylaminopyridine were used as catalysts in the esterifications. The polystyrene contents of the copolymers varied between 10 and 80% and the molecular weights of the polystyrene grafts were 2500, 12,100 and 17,100 (M?w/M?n = 1.1).  相似文献   

19.
Predictions of the “redox” and “complex” schemes for the Fe3+ catalyzed decomposition of H2O2 have been compared with published and new experimental data by numerical integratior of the appropriate complete sets of differential equations. Apparent discrepancies for the redox scheme at high Fe3+/H2O2 ratios are shown to disappear in the complete treatment, and inconsistencies of the complex scheme with both kinetic data and spectroscopic measurements are pointed out.  相似文献   

20.
以质子化层状钙钛矿氧化物H1.9K0.3La0.5Bi0.1Ta2O7 (HKLBT)作为产氢催化剂, Pt/WO3作为产氧催化材料进行Z 型体系下完全分解水反应. 考察了不同载流子传递介质及不同载流子浓度对反应活性的影响. 结果表明, 以Fe2+/Fe3+为载流子传递介质时可以实现水的完全分解(H2/O2体积比为2:1), 8 mmol·L-1的FeCl3作为初始载流子传递介质时, 产氢、产氧活性分别为66.8和31.8 μmol·h-1, 氢氧体积比为2.1:1. 受光催化材料对载流子传递介质氧化还原速度的限制, 过高的载流子传递介质浓度并不能提高光催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号