首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hydrogen has been shown to be a true chain-transfer agent with some organometallic olefin polymerization catalysts. However, the Mayo equation for chain transfer in free-radical polymerization does not fit quantitative data from organometallic catalysts. There appear to be two reasons for the lack of fit. First, the Mayo equation considers the competition between hydrogen and olefin for the growing chain but does not account for their competitive absorption on the catalyst (coordination with vacant orbitals on the transition metal). Second, some organometallic catalysts gradually absorb hydrogen irreversibly to give a new catalyst species of altered behavior.  相似文献   

3.
Radical polymerizations of methyl methacrylate (MMA), styrene (St), and vinyl acetate (VAc) were carried out in the presence of a novel phenyl acrylate derivative bearing a hindered phenol moiety (HPA). It has been clarified that HPA acts as a retarder and inhibitor for the polymerizations of MMA and VAc, respectively, and that in the polymerization of St it behaves as a monomer to give a copolymer. These additive effects were interpreted in terms of intramolecular transfer of the phenolic hydrogen in competition with propagation of the HPA radical to monomers. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The reaction of vinyl radicals with propylene and propyl radicals was investigated in the gas phase. The radicals were produced by mercury sensitized decomposition of molecular hydrogen followed by addition of hydrogen atoms to propylene and acetylene. Vinyl radical adds to propylene effectively while hydrogen atom abstraction does not occur.
. , , . , , .
  相似文献   

5.
We report a B3LYP study of a novel mechanism for propylene epoxidation using H(2) and O(2) on a neutral Au(3) cluster, including full thermodynamics and pre-exponential factors. A side-on O(2) adsorption on Au(3) is followed by dissociative addition of H(2) across one of the Au-O bonds (DeltaE(act) = 2.2 kcal/mol), forming a hydroperoxy intermediate (OOH) and a lone H atom situated on the Au(3) cluster. The more electrophilic O atom (proximal to the Au) of the Au-OOH group attacks the C=C of an approaching propylene to form propylene oxide (PO) with an activation barrier of 19.6 kcal/mol. We predict the PO desorption energy from the Au(3) cluster with residual OH and H to be 11.5 kcal/mol. The catalytic cycle can be closed in two different ways. In the first subpathway, OH and H, hosted by the same terminal Au atom, combine to form water (DeltaE(act) = 26.5 kcal/mol). We attribute rather a high activation barrier of this step to the breaking of the partial bond between the H atom and the central Au atom in the transition state. Upon water desorption (DeltaE(des) = 9.9 kcal/mol), the Au(3) is regenerated (closure). In the second subpathway, H(2) is added across the Au-OH bond to form water and another Au-H bond (DeltaE(act) = 22.6 kcal/mol). Water spontaneously desorbs to form an obtuse angle Au(3) dihydride, with one H atom on the terminal Au atom and the other bridging the same terminal Au atom and the central Au atom. A slightly activated rearrangement to a symmetric triangular Au(3) intermediate with two equivalent Au-H bonds, addition of O(2) into the Au-H bond, and rotation reforms the hydroperoxy intermediate in the main cycle. On the basis of the DeltaG(act), which contains contribution from both pre-exponetial factor and activation energy, we identify the propylene epoxidation step as the actual rate-determining step (RDS) in both the pathways. The activation barrier of the RDS (epoxidation step: DeltaE(act) = 19.6 kcal/mol) is in the same range as that in the published computationally investigated olefin epoxidation mechanisms involving Ti sites (without Au involved) indicating that isolated Au clusters and possibly Au clusters on non-Ti supports can be active for gas-phase partial oxidation, even though cooperative mechanisms involving Au clusters/Ti-based-supports may be favored.  相似文献   

6.
Ethylalumoxanes and ethylchloroalumoxanes as components of Ziegler-Natta catalysts for polymerization of propylene have been studied. The influence of the degree of hydrolysis of triethyl aluminium [(Et3Al) and diethylaluminium chlorilp (Et2AlCl)2] in the range 0.5–1.5:1 on the activity and the stereospecificity of the catalytic systems was determined (the degree of hydrolysis is defined as the molar ratio H2O/organoaluminium compound). It was found that the activity of the catalytic system ethylalumoxane- TiCl4 is a little higher than the activity of the Et2AlCl-TiCl4 system. The ethylchloroalumoxane-TiCl4 system is about six times more active than the classical Ziegler-Natta system. Our studies showed that alumoxanes react with TiCl4 as follows: (a) to form compounds of the Al? O? TiCl3 type; (b) to exchange alkyl groups for chlorine; (c) to form donor-acceptor complexes. Reactions of types (b) and (c) occur mainly in the cases of alumoxanes of low degree of hydrolysis (0.5–0.7). In cases of alumoxanes of a degree of hydrolysis equal to 0.7–1.0, reactions of all three types occur, and for alumoxanes of degree of hydrolysis >1.0 reactions of types (a) and (c) are preferred.  相似文献   

7.
The anionic polymerization of propylene oxide with the use of potassium tert-butoxide and naphthalene sodium as initiator and dimethylsulfoxide, tetrahydrofuran and mixtures of both as solvent was investigated. The reactions were carried out in vacuum-sealed dilatometers over the temperature range 20?60°C. The products were analyzed by gelpermeation chromatography and infrared spectroscopy. The object of the investigation was to obtain information on the mechanism of the reaction and elucidate some of its kinetic aspects. It is shown that the polymerization occurs by two different processes depending on the experimental conditions: one involving free ions and ion-pairs, the other, ion-pairs alone. In the first case, where DMSO was used as solvent, the order of the reaction with respect to the initiator is greater than unity (~1.7), while in the second case, involving the mixture of DMSO and THF and ion-pairs alone, the reaction order is only one. Transfer to monomer is believed to take place only in the strongly dissociating DMSO medium, where free ions are present.  相似文献   

8.
Rate studies were done on the polymerization of propylene with the TiCl3–diethyl aluminum chloride catalyst system. The polymerization is initially first-order with respect to propylene concentration. There is a rapid rate decline in the initial period, during which time the reaction becomes functionally second-order. A physical explanation for this behavior has been adapted from the Avrami equation for crystal growth kinetics. A yield equation was developed which fits experimental data closely. Rate correlations show that the initial rate is exponentially related to the TiCl3/alkyl ratio. Water and other active hydrogen compounds reduce rate; hydrogen increases rate. A “bimetallic” mechanism is proposed which views catalyst activation as consisting of three equilibria, followed by a propagation step where an alkyl group is transferred to the growing chain, and a realkylation of the hydride that remains after the propagation step.  相似文献   

9.
A facile gas phase polymerization method has been proposed in this work to fabricate porous free-standing polypyrrole (PPy) films. In the presence of pyrrole vapor, the films are obtained in the gas/water interface spontaneously through the interface polymerization with the oxidant of FeCl(3) in the water. Both the thickness of the film and the size of the pores could be controlled by adjusting the concentrations of the oxidant and the reaction time. The as-prepared PPy films exhibited a superhydrophilic behavior due to its composition and porous structures. We have demonstrated a possible formation mechanism for the porous free-standing PPy films. This gas phase polymerization is shown to be readily scalable to prepare large area of PPy films.  相似文献   

10.
The role of monomer diffusion in the polymerization of propylene by organometallic catalysis was examined by use of mathematical models which couple the rate of diffusion through the polymer film surrounding the catalyst with the rate of surface reaction. An approximate form of a second-order, integrated rate equation was used to describe the disappearance of active sites on the surface. For the most conservative model conceivable, it was estimated that the particle size would have to be 10–100 times the size for the catalysts presently in use before diffusion time would be significant. The size of the catalysts was determined by photomicrographs and nitrogen adsorption surface areas. The surface areas for three different catalysts were 7, 20–21 and 35 m.2/g., respectively. The kinetic model without the diffusion term was used satisfactorily to correlate productivity data. The characteristic decline in reaction rate was examined in terms of the decay of active sites on the surface of the catalyst. The rate of decay was determined to be second order with respect to the site concentration. The kinetic model indicates that the total polymerization time for a specified productivity is the sum of the monomer diffusion time and the surface reaction time. The model derived by use of an approximate second-order decay function is unique because of the additivity of diffusion and reaction times, which is not the case when the second-order function is used rigorously.  相似文献   

11.
Flowing microwave plasma of propylene and propylene with argon was studied by mass spectrometry. Plasma composition was investigated as a function of external parameters such as pressure, argon/propylene ratio, and microwave-induced power. It was found that the propylene broke down to C2H2 and CH4, or reacted further with propylene. Two main products, leading to the determination of three main chain reactions for the polymerization of propylene by ion-molecule interactions, were observed, namely, C2H2 and CH4. These were the propylene, acetylene, and ethylene chain reactions. It was also found that the propylene disappeared in a pseudo-first-order reaction. Consequently an overall rate constant for the polymerization was determined (50 sec–1 at 1 torr pressure for propylene plasma). This constant is found to be linearly dependent upon the propylene percent concentration, and nonlinearly dependent upon plasma pressure.Partly presented at the 157th meeting of the Electrochemical Society, St. Louis, Missouri, May 11–16, 1980.  相似文献   

12.
Catalytic activities of the reaction products of diethylzinc or triethylaluminum with primary amines in the polymerization of propylene oxide were studied. Generally, organozinc compounds give higher ratio of the crystalline to the amorphous polymer than the organoaluminums. In the reactions of organometallic compounds with primary amines, Et2AlNPhAlEt2, Et2AlN-t-BuAlEt2, EtZnNH-t-Bu, and EtZn-t-BuZnEt were isolated in crystalline state. EtZnN-t-BuZnEt proved to be an excellent catalyst for the stereospecific polymerization of propylene oxide and forms coordination complexes with some electron donors such as dioxane, pyridine, epichlorohydrin and propylene oxide. The propylene oxide complex is unstable in solution and decomposes at temperatures above room temperature to give poly(propylene oxide), while the pyridine complex has no catalytic activity. Therefore, it is concluded that the polymerization of propylene oxide with this catalyst proceeds through the coordination of propylene oxide to the zinc atom of the catalyst.  相似文献   

13.
This article discusses a new borane chain transfer reaction in olefin polymerization that uses trialkylboranes as a chain transfer agent and thus can be realized in conventional single site polymerization processes under mild conditions. Commercially available triethylborane (TEB) and synthesized methyl‐B‐9‐borabicyclononane (Me‐B‐9‐BBN) were engaged in metallocene/MAO [depleted of trimethylaluminum (TMA)]‐catalyzed ethylene (Cp2ZrCl2 and rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2 as a catalyst) and styrene (Cp*Ti(OMe)3 as catalyst) polymerizations. The two trialkylboranes were found—in most cases—able to initiate an effective chain transfer reaction, which resulted in hydroxyl (OH)‐terminated PE and s‐PS polymers after an oxidative workup process, suggesting the formation of the B‐polymer bond at the polymer chain end. However, chain transfer efficiencies were influenced substantially by the steric hindrances of both the substituent on the trialkylborane and that on the catalyst ligand. TEB was more effective than TMA in ethylene polymerization with Cp2ZrCl2/MAO, whereas it became less effective when the catalyst changed to rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2. Both TEB and Me‐B‐9‐BBN caused an efficient chain transfer in the Cp2ZrCl2/MAO‐catalyzed ethylene polymerization; nevertheless, Me‐B‐9‐BBN failed in vain with rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2/MAO. In the case of styrene polymerization with Cp*Ti(OMe)3/MAO, thanks to the large steric openness of the catalyst, TEB exhibited a high efficiency of chain transfer. Overall, trialkylboranes as chain transfer agents perform as well as B? H‐bearing borane derivatives, and are additionally advantaged by a much milder reaction condition, which further boosts their applicability in the preparation of borane‐terminated polyolefins. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3534–3541, 2010  相似文献   

14.
This report describes propylene polymerization reactions with titanium complexes bearing carbamato ligands, Ti(O2CNMe2)Cl2 ( I ) and Ti(O2CR2)4 [R2 = NMe2 ( II ), NEt2 ( III ) and ( IV )]. Combinations of these complexes and MAO form catalysts for the synthesis of atactic polypropylene, as confirmed by FT‐IR, DSC and 13C NMR analysis. Effects of main reaction parameters on the catalyst activity were studied including the type of complex, solvent, temperature, and the [Al]/[Ti] molar ratio. The highest activity was observed when chlorobenzene was used as a solvent and AlMe3‐depleted MAO was employed as a cocatalyst. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4095–4102  相似文献   

15.
16.
Preparation and characterization of new ansa-metallocene complexes containing two substituted fluorenyl ligands connected by an R2E bridge (R = Me, Ph; E = Si, Sn) are reported. The complexes, activated with methylaluminoxane (MAO), polymerize propylene. The degree of stereospecifity of the propylene polymerization depends on the size of the hetero atom in the bridge and the position of the substituents.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2334–2339, September, 1996.  相似文献   

17.
Porous silica particles of 3 μm diameter and 100 Å nominal pore size were first activated for vinylic polymerization by functionalization with 3-methacryloyloxypropyl trimethoxysilane (MAPTMS) and thereafter dressed with zwitterionic grafts of the sulfoalkylbetaine type in the “grafting through” fashion by polymerizing 3-(2-(N-methacryloyloxyethyl)-N,N-dimethylammonio)propane sulfonate (SPE), using either free radical polymerization or controlled reversible addition fragmentation chain transfer polymerization (RAFT). Particles polymerized using RAFT had a lower overall coating which seemed to be more evenly distributed in the pore volume. Both approaches resulted in columns with similar separation properties in HILIC mode.  相似文献   

18.
Half sandwich complexes of titanium bearing eta1 or eta2 bound nitroxide ligands are highly active catalysts for the polymerisation of propylene to high molecular weight atactic poly(propylene).  相似文献   

19.
Tetrabenzyltitanium (B4Ti), tribenzyltitanium chloride (B3TiCl), tetra(p-methylbenzyl)titanium (R4Ti) and tri(p-methylbenzyl)titanium chloride (R3TiCl) have been used as catalysts for ethylene and propylene polymerization activated by AlEt2Cl. B4Ti-AIEt2Cl in solution polymerizes ethylene readily but its activity decays rapidly. B4Ti was also supported on Cab-O-Sil, Alon C, and Mg(OH)Cl. The last support was found to give catalyst with longest lifetime with a rate of polymerization, Rp = 7.0 g/hr-mmole Ti-atm ethylene. 14CO counting techniques gave 1.13 × 10?3 mole of propagating center per mole of B4Ti; the rate constant of propagation, kp = 540 l./mole-sec. None of the tetravalent titanium compounds polymerize propylene in solution. However, when supported on Mg(OH)Cl, Cab-O-Sil, Alon C, Cab-O-Ti, and charcoal, they all polymerize propylene. In this work the supports were characterized by various techniques, including the paramagnetic probe method, to determine the concentration and nature of surface hydroxyls. Those factors controlling the rate and stereospecificity of propylene polymerization were investigated. The system B3TiCl–Mg(OH)Cl–AlEt2Cl is the most active with Rp = 2.89 g/hr-mmole Ti-atm propylene. The concentration of propagation center is 0.9 × 10?3 mole per mole of B3TiCl; kp = 32 l./mole-sec. This catalyst gave only about 70% stereoregular polymer. Diethyl ether is found to raise stereospecificity to 100%, but there is a concommittent tenfold decrease of activity. Other interesting catalyst systems are: (π-C5H5)TiMe3–Mg(OH)Cl–AlEt2Cl (1.56, 89.5); (π-C5H5)TiMe2–Mg(OH)Cl–AlEt2Cl (0.075, 94.5); and (π-C5H5)TiMe3–Alon C–Al-Et2Cl (0.08,97.2), where the first number in the parenthesis is Rp in g/mmole Ti-hr-atm and the second entry corresponds to percentage yield of stereoregular polypropylene. Hafnocene and titanocene supported on Mg(OH)Cl produce only oligomers of propylene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号